Исследование функции примеры с подробным решением. Полное исследование функции и построение графика

Исследование функции примеры с подробным решением. Полное исследование функции и построение графика

Исследование функции производится по четкой схеме и требует от студента твердых знаний основных математических понятий таких, как область определения и значений, непрерывность функции, асимптота, точки экстремума, четность, периодичность и т.п. Студент должен свободно дифференцировать функции и решать уравнения, которые порой бывают очень замысловатыми.

То есть данное задание проверяет существенный пласт знаний, любой пробел в которых станет препятствием к получению правильного решения. Особенно часто сложности возникают с построением графиков функций. Эта ошибка сразу бросается в глаза преподавателю и может очень сильно подпортить вашу оценку, даже если все остальное было сделано правильно. Здесь вы можете найти задачи на исследование функции онлайн : изучить примеры, скачать решения, заказать задания.

Исследовать функцию и построить график: примеры и решения онлайн

Мы приготовили для вас множество готовых исследований функций , как платных в решебнике, так и бесплатных в разделе Примеры исследований функций . На основе этих решенных заданий вы сможете детально ознакомиться с методикой выполнения подобных задач, по аналогии выполнить свое исследование.

Мы предлагаем готовые примеры полного исследования и построения графика функции самых распространенных типов: многочленов, дробно-рациональных, иррациональных, экспоненциальных, логарифмических, тригонометрических функций. К каждой решенной задаче прилагается готовый график с выделенными ключевыми точками, асимптотами, максимумами и минимумами, решение ведется по алгоритму исследования функции .

Решенные примеры, в любом случае, станут для вас хорошим подспорьем, так как охватывают самые популярные типы функций. Мы предлагаем вам сотни уже решенных задач, но, как известно, математических функций на свете - бесконечное количество, а преподаватели - большие мастаки выдумывать для бедных студентов все новые и новые заковыристые задания. Так что, дорогие студенты, квалифицированная помощь вам не помешает.

Решение задач на исследование функции на заказ

На этот случай наши партнеры предложат вам другую услугу - полное исследование функции онлайн на заказ. Задание будет выполнено для вас с соблюдением всех требований к алгоритму решения подобных задач, что очень порадует вашего преподавателя.

Мы сделаем для вас полное исследование функции: найдем область определения и область значений, исследуем на непрерывность и разрывность, установим четность, проверим вашу функцию на периодичность, найдем точки пересечения с осями координат. Ну и, конечно же, дальше с помощью дифференциального исчисления: разыщем асимптоты, вычислим экстремумы, точки перегиба, построим сам график.

Если в задаче необходимо произвести полное исследование функции f (x) = x 2 4 x 2 - 1 с построением его графика, тогда рассмотрим этот принцип подробно.

Для решения задачи данного типа следует использовать свойства и графики основных элементарных функций. Алгоритм исследования включает в себя шаги:

Yandex.RTB R-A-339285-1

Нахождение области определения

Так как исследования проводятся на области определения функции, необходимо начинать с этого шага.

Пример 1

Заданный пример предполагает нахождение нулей знаменателя для того, чтобы исключить их из ОДЗ.

4 x 2 - 1 = 0 x = ± 1 2 ⇒ x ∈ - ∞ ; - 1 2 ∪ - 1 2 ; 1 2 ∪ 1 2 ; + ∞

В результате можно получить корни, логарифмы, и так далее. Тогда ОДЗ можно искать для корня четной степени типа g (x) 4 по неравенству g (x) ≥ 0 , для логарифма log a g (x) по неравенству g (x) > 0 .

Исследование границ ОДЗ и нахождение вертикальных асимптот

На границах функции имеются вертикальные асимптоты, когда односторонние пределы в таких точках бесконечны.

Пример 2

Для примера рассмотрим приграничные точки, равные x = ± 1 2 .

Тогда необходимо проводить исследование функции для нахождения одностороннего предела. Тогда получаем, что: lim x → - 1 2 - 0 f (x) = lim x → - 1 2 - 0 x 2 4 x 2 - 1 = = lim x → - 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · - 0 = + ∞ lim x → - 1 2 + 0 f (x) = lim x → - 1 2 + 0 x 2 4 x - 1 = = lim x → - 1 2 + 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · (+ 0) = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 0) · 2 = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (+ 0) · 2 = + ∞

Отсюда видно, что односторонние пределы являются бесконечными, значит прямые x = ± 1 2 - вертикальные асимптоты графика.

Исследование функции и на четность или нечетность

Когда выполняется условие y (- x) = y (x) , функция считается четной. Это говорит о том, что график располагается симметрично относительно О у. Когда выполняется условие y (- x) = - y (x) , функция считается нечетной. Значит, что симметрия идет относительно начала координат. При невыполнении хотя бы одного неравенства, получаем функцию общего вида.

Выполнение равенства y (- x) = y (x) говорит о том, что функция четная. При построении необходимо учесть, что будет симметричность относительно О у.

Для решениянеравенства применяются промежутки возрастания и убывания с условиями f " (x) ≥ 0 и f " (x) ≤ 0 соответственно.

Определение 1

Стационарные точки – это такие точки, которые обращают производную в ноль.

Критические точки - это внутренние точки из области определения, где производная функции равняется нулю или не существует.

При решении необходимо учитывать следующие замечания:

  • при имеющихся промежутках возрастания и убывания неравенства вида f " (x) > 0 критические точки в решение не включаются;
  • точки, в которых функция определена без конечной производной, необходимо включать в промежутки возрастания и убывания (к примеру, y = x 3 , где точка х = 0 делает функцию определенной, производная имеет значение бесконечности в этой точке, y " = 1 3 · x 2 3 , y " (0) = 1 0 = ∞ , х = 0 включается в промежуток возрастания);
  • во избежание разногласий рекомендовано пользоваться математической литературой, которая рекомендована министерством образования.

Включение критических точек в промежутки возрастания и убывания в том случае, если они удовлетворяют области определения функции.

Определение 2

Для определения промежутков возрастания и убывания функции необходимо найти :

  • производную;
  • критические точки;
  • разбить область определения при помощи критических точек на интервалы;
  • определить знак производной на каждом из промежутков, где + является возрастанием, а - является убыванием.

Пример 3

Найти производную на области определения f " (x) = x 2 " (4 x 2 - 1) - x 2 4 x 2 - 1 " (4 x 2 - 1) 2 = - 2 x (4 x 2 - 1) 2 .

Решение

Для решения нужно:

  • найти стационарные точки, данный пример располагает х = 0 ;
  • найти нули знаменателя, пример принимает значение ноль при x = ± 1 2 .

Выставляем точки на числовой оси для определения производной на каждом промежутке. Для этого достаточно взять любую точку из промежутка и произвести вычисление. При положительном результате на графике изображаем + , что означает возрастание функции, а - означает ее убывание.

Например, f " (- 1) = - 2 · (- 1) 4 - 1 2 - 1 2 = 2 9 > 0 , значит, первый интервал слева имеет знак + . Рассмотрим на числовой прямой.

Ответ:

  • происходит возрастание функции на промежутке - ∞ ; - 1 2 и (- 1 2 ; 0 ] ;
  • происходит убывание на промежутке [ 0 ; 1 2) и 1 2 ; + ∞ .

На схеме при помощи + и - изображается положительность и отрицательность функции, а стрелочки – убывание и возрастание.

Точки экстремума функции – точки, где функция определена и через которые производная меняет знак.

Пример 4

Если рассмотреть пример, где х = 0 , тогда значение функции в ней равняется f (0) = 0 2 4 · 0 2 - 1 = 0 . При перемене знака производной с + на - и прохождении через точку х = 0 , тогда точка с координатами (0 ; 0) считается точкой максимума. При перемене знака с - на + получаем точку минимума.

Выпуклость и вогнутость определяется при решении неравенств вида f "" (x) ≥ 0 и f "" (x) ≤ 0 . Реже используют название выпуклость вниз вместо вогнутости, а выпуклость вверх вместо выпуклости.

Определение 3

Для определения промежутков вогнутости и выпуклости необходимо:

  • найти вторую производную;
  • найти нули функции второй производной;
  • разбить область определения появившимися точками на интервалы;
  • определить знак промежутка.

Пример 5

Найти вторую производную из области определения.

Решение

f "" (x) = - 2 x (4 x 2 - 1) 2 " = = (- 2 x) " (4 x 2 - 1) 2 - - 2 x 4 x 2 - 1 2 " (4 x 2 - 1) 4 = 24 x 2 + 2 (4 x 2 - 1) 3

Находим нули числителя и знаменателя, где на примере нашего примера имеем, что нули знаменателя x = ± 1 2

Теперь необходимо нанести точки на числовую ось и определить знак второй производной из каждого промежутка. Получим, что

Ответ:

  • функция является выпуклой из промежутка - 1 2 ; 1 2 ;
  • функция является вогнутой из промежутков - ∞ ; - 1 2 и 1 2 ; + ∞ .

Определение 4

Точка перегиба – это точка вида x 0 ; f (x 0) . Когда в ней имеется касательная к графику функции, то при ее прохождении через x 0 функция изменяет знак на противоположный.

Иначе говоря, это такая точка, через которую проходит вторая производная и меняет знак, а в самих точках равняется нулю или не существует. Все точки считаются областью определения функции.

В примере было видно, что точки перегиба отсутствуют, так как вторая производная изменяет знак во время прохождения через точки x = ± 1 2 . Они, в свою очередь, в область определения не входят.

Нахождение горизонтальных и наклонных асимптот

При определении функции на бесконечности нужно искать горизонтальные и наклонные асимптоты.

Определение 5

Наклонные асимптоты изображаются при помощи прямых, заданных уравнением y = k x + b , где k = lim x → ∞ f (x) x и b = lim x → ∞ f (x) - k x .

При k = 0 и b , не равному бесконечности, получаем, что наклонная асимптота становится горизонтальной .

Иначе говоря, асимптотами считают линии, к которым приближается график функции на бесконечности. Это способствует быстрому построению графика функции.

Если асимптоты отсутствуют, но функция определяется на обеих бесконечностях, необходимо посчитать предел функции на этих бесконечностях, чтобы понять, как себя будет вести график функции.

Пример 6

На примере рассмотрим, что

k = lim x → ∞ f (x) x = lim x → ∞ x 2 4 x 2 - 1 x = 0 b = lim x → ∞ (f (x) - k x) = lim x → ∞ x 2 4 x 2 - 1 = 1 4 ⇒ y = 1 4

является горизонтальной асимптотой. После исследования функции можно приступать к ее построению.

Вычисление значения функции в промежуточных точках

Чтобы построение графика было наиболее точным, рекомендовано находить несколько значений функции в промежуточных точках.

Пример 7

Из рассмотренного нами примера необходимо найти значения функции в точках х = - 2 , х = - 1 , х = - 3 4 , х = - 1 4 . Так как функция четная, получим, что значения совпадут со значениями в этих точках, то есть получим х = 2 , х = 1 , х = 3 4 , х = 1 4 .

Запишем и решим:

F (- 2) = f (2) = 2 2 4 · 2 2 - 1 = 4 15 ≈ 0 , 27 f (- 1) - f (1) = 1 2 4 · 1 2 - 1 = 1 3 ≈ 0 , 33 f - 3 4 = f 3 4 = 3 4 2 4 3 4 2 - 1 = 9 20 = 0 , 45 f - 1 4 = f 1 4 = 1 4 2 4 · 1 4 2 - 1 = - 1 12 ≈ - 0 , 08

Для определения максимумов и минимумов функции, точек перегиба, промежуточных точек необходимо строить асимптоты. Для удобного обозначения фиксируются промежутки возрастания, убывания, выпуклость, вогнутость. Рассмотрим на рисунке, изображенном ниже.

Необходимо через отмеченные точки проводить линии графика, что позволит приблизить к асимптотам, следуя стрелочкам.

На этом заканчивается полное исследование функции. Встречаются случаи построения некоторых элементарных функций, для которых применяют геометрические преобразования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Как исследовать функцию и построить её график?

Похоже, я начинаю понимать одухотворённо-проникновенный лик вождя мирового пролетариата, автора собрания сочинений в 55 томах…. Нескорый путь начался элементарными сведениями о функциях и графиках , и вот сейчас работа над трудоемкой темой заканчивается закономерным результатом – статьёй о полном исследовании функции . Долгожданное задание формулируется следующим образом:

Исследовать функцию методами дифференциального исчисления и на основании результатов исследования построить её график

Или короче: исследовать функцию и построить график.

Зачем исследовать? В простых случаях нас не затруднит разобраться с элементарными функциями, начертить график, полученный с помощью элементарных геометрических преобразований и т.п. Однако свойства и графические изображения более сложных функций далеко не очевидны, именно поэтому и необходимо целое исследование.

Основные этапы решения сведены в справочном материале Схема исследования функции , это ваш путеводитель по разделу. Чайникам требуется пошаговое объяснение темы, некоторые читатели не знают с чего начать и как организовать исследование, а продвинутым студентам, возможно, будут интересны лишь некоторые моменты. Но кем бы вы ни были, уважаемый посетитель, предложенный конспект с указателями на различные уроки в кратчайший срок сориентирует и направит Вас в интересующем направлении. Роботы прослезились =) Руководство свёрстано в виде pdf-файла и заняло заслуженное место на странице Математические формулы и таблицы .

Исследование функции я привык разбивать на 5-6 пунктов:

6) Дополнительные точки и график по результатам исследования.

На счёт заключительного действия, думаю, всем всё понятно – будет очень обидно, если в считанные секунды его перечеркнут и вернут задание на доработку. ПРАВИЛЬНЫЙ И АККУРАТНЫЙ ЧЕРТЁЖ – это основной результат решения! Он с большой вероятностью «прикроет» аналитические оплошности, в то время как некорректный и/или небрежный график доставит проблемы даже при идеально проведённом исследовании.

Следует отметить, что в других источниках количество пунктов исследования, порядок их выполнения и стиль оформления могут существенно отличаться от предложенной мной схемы, но в большинстве случаев её вполне достаточно. Простейшая версия задачи состоит всего из 2-3 этапов и формулируется примерно так: «исследовать функцию с помощью производной и построить график» либо «исследовать функцию с помощью 1-й и 2-й производной, построить график».

Естественно – если в вашей методичке подробно разобран другой алгоритм или ваш преподаватель строго требует придерживаться его лекций, то придётся внести некоторые коррективы в решение. Не сложнее, чем заменить вилку бензопилой ложкой.

Проверим функцию на чётность/нечётность:

После чего следует шаблонная отписка:
, значит, данная функция не является чётной или нечётной.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют.

Нет и наклонных асимптот.

Примечание : напоминаю, что более высокого порядка роста , чем , поэтому итоговый предел равен именно «плюс бесконечности».

Выясним, как ведёт себя функция на бесконечности:

Иными словами, если идём вправо, то график уходит бесконечно далеко вверх, если влево – бесконечно далеко вниз. Да, здесь тоже два предела под единой записью. Если у вас возникли трудности с расшифровкой знаков , пожалуйста, посетите урок о бесконечно малых функциях .

Таким образом, функция не ограничена сверху и не ограничена снизу . Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции : – тоже любое действительное число.

ПОЛЕЗНЫЙ ТЕХНИЧЕСКИЙ ПРИЁМ

Каждый этап задания приносит новую информацию о графике функции , поэтому в ходе решения удобно использовать своеобразный МАКЕТ. Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение:

Заметьте, что в силу непрерывности функции на и того факта, что , график должен, по меньшей мере, один раз пересечь ось . А может быть точек пересечения несколько?

3) Нули функции и интервалы знакопостоянства.

Сначала найдём точку пересечения графика с осью ординат. Это просто. Необходимо вычислить значение функции при :

Полтора над уровнем моря.

Чтобы найти точки пересечения с осью (нули функции) требуется решить уравнение , и тут нас поджидает неприятный сюрприз:

В конце притаился свободный член, который существенно затрудняет задачу.

Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано , но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень. Проверим, не являются ли оными числа :
– не подходит;
– есть!

Здесь повезло. В случае неудачи можно протестировать ещё и , а если и эти числа не подошли, то шансов на выгодное решение уравнения, боюсь, очень мало. Тогда пункт исследования лучше полностью пропустить – авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. И если таки корень (корни) явно «нехорошие», то об интервалах знакопостоянства лучше вообще скромно умолчать да поаккуратнее выполнить чертёж.

Однако у нас есть красивый корень , поэтому делим многочлен на без остатка:

Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы .

В итоге левая часть исходного уравнения раскладывается в произведение:

А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: уравнение имеет два действительных корня .

На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:


Таким образом, на интервалах график расположен
ниже оси абсцисс , а на интервалах – выше данной оси .

Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом:

Обратите внимание, что на интервале функция обязательно должна иметь хотя бы один максимум, а на интервале – хотя бы один минимум. Но сколько раз, где и когда будет «петлять» график, мы пока не знаем. К слову, функция может иметь и бесконечно много экстремумов .

4) Возрастание, убывание и экстремумы функции.

Найдём критические точки:

Данное уравнение имеет два действительных корня . Отложим их на числовой прямой и определим знаки производной:


Следовательно, функция возрастает на и убывает на .
В точке функция достигает максимума: .
В точке функция достигает минимума: .

Установленные факты загоняют наш шаблон в довольно жёсткие рамки:

Что и говорить, дифференциальное исчисление – штука мощная. Давайте окончательно разберёмся с формой графика:

5) Выпуклость, вогнутость и точки перегиба.

Найдём критические точки второй производной:

Определим знаки :


График функции является выпуклым на и вогнутым на . Вычислим ординату точки перегиба: .

Практически всё прояснилось.

6) Осталось найти дополнительные точки, которые помогут точнее построить график и выполнить самопроверку. В данном случае их мало, но пренебрегать не будем:

Выполним чертёж:

Зелёным цветом отмечена точка перегиба, крестиками – дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

По ходу выполнения задания я привёл три гипотетических промежуточных чертежа. На практике же достаточно нарисовать систему координат, отмечать найденные точки и после каждого пункта исследования мысленно прикидывать, как может выглядеть график функции. Студентам с хорошим уровнем подготовки не составит труда провести такой анализ исключительно в уме без привлечения черновика.

Для самостоятельного решения:

Пример 2

Исследовать функцию и построить график.

Тут всё быстрее и веселее, примерный образец чистового оформления в конце урока.

Немало секретов раскрывает исследование дробно-рациональных функций:

Пример 3

Методами дифференциального исчисления исследовать функцию и на основании результатов исследования построить её график.

Решение : первый этап исследования не отличается чем-то примечательным, за исключением дырки в области определения:

1) Функция определена и непрерывна на всей числовой прямой кроме точки , область определения : .


, значит, данная функция не является четной или нечетной.

Очевидно, что функция непериодическая.

График функции представляет собой две непрерывные ветви, расположенные в левой и правой полуплоскости – это, пожалуй, самый важный вывод 1-го пункта.

2) Асимптоты, поведение функции на бесконечности.

а) С помощью односторонних пределов исследуем поведение функции вблизи подозрительной точки, где явно должна быть вертикальная асимптота:

Действительно, функции терпит бесконечный разрыв в точке ,
а прямая (ось ) является вертикальной асимптотой графика .

б) Проверим, существуют ли наклонные асимптоты:

Да, прямая является наклонной асимптотой графика , если .

Пределы анализировать смысла не имеет, поскольку и так понятно, что функция в обнимку со своей наклонной асимптотой не ограничена сверху и не ограничена снизу .

Второй пункт исследования принёс много важной информации о функции. Выполним черновой набросок:

Вывод №1 касается интервалов знакопостоянства. На «минус бесконечности» график функции однозначно расположен ниже оси абсцисс, а на «плюс бесконечности» – выше данной оси. Кроме того, односторонние пределы сообщили нам, что и слева и справа от точки функция тоже больше нуля. Обратите внимание, что в левой полуплоскости график, по меньшей мере, один раз обязан пересечь ось абсцисс. В правой полуплоскости нулей функции может и не быть.

Вывод №2 состоит в том, что функция возрастает на и слева от точки (идёт «снизу вверх»). Справа же от данной точки – функция убывает (идёт «сверху вниз»). У правой ветви графика непременно должен быть хотя бы один минимум. Слева экстремумы не гарантированы.

Вывод №3 даёт достоверную информацию о вогнутости графика в окрестности точки . О выпуклости/вогнутости на бесконечностях мы пока ничего сказать не можем, поскольку линия может прижиматься к своей асимптоте как сверху, так и снизу. Вообще говоря, есть аналитический способ выяснить это прямо сейчас, но форма графика «даром» прояснится на более поздних этапах.

Зачем столько слов? Чтобы контролировать последующие пункты исследования и не допустить ошибок! Дальнейшие выкладки не должны противоречить сделанным выводам.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.

График функции не пересекает ось .

Методом интервалов определим знаки :

, если ;
, если .

Результаты пункта полностью соответствуют Выводу №1. После каждого этапа смотрите на черновик, мысленно сверяйтесь с исследованием и дорисовывайте график функции.

В рассматриваемом примере числитель почленно делится на знаменатель, что очень выгодно для дифференцирования:

Собственно, это уже проделывалось при нахождении асимптот.

– критическая точка.

Определим знаки :

возрастает на и убывает на

В точке функция достигает минимума: .

Разночтений с Выводом №2 также не обнаружилось, и, вероятнее всего, мы на правильном пути.

Значит, график функции является вогнутым на всей области определения.

Отлично – и чертить ничего не надо.

Точки перегиба отсутствуют.

Вогнутость согласуется с Выводом №3, более того, указывает, что на бесконечности (и там и там) график функции расположен выше своей наклонной асимптоты.

6) Добросовестно приколотим задание дополнительными точками. Вот здесь придётся изрядно потрудиться, поскольку из исследования нам известны только две точки.

И картинка, которую, наверное, многие давно представили:


В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой. Вот «не сходится» аналитика – и всё тут. В этом случае рекомендую аварийный приём: находим как можно больше точек, принадлежащих графику (сколько хватит терпения), и отмечаем их на координатной плоскости. Графический анализ найденных значений в большинстве случаев подскажет, где правда, а где ложь. Кроме того, график можно предварительно построить с помощью какой-нибудь программы, например, в том же Экселе (понятно, для этого нужны навыки).

Пример 4

Методами дифференциального исчисления исследовать функцию и построить её график.

Это пример для самостоятельного решения. В нём самоконтроль усиливается чётностью функции – график симметричен относительно оси , и если в вашем исследовании что-то противоречит данному факту, ищите ошибку.

Чётную или нечётную функцию можно исследовать только при , а потом пользоваться симметрией графика. Такое решение оптимально, однако выглядит, по моему мнению, весьма непривычно. Лично я рассматриваю всю числовую ось, но дополнительные точки нахожу всё же лишь справа:

Пример 5

Провести полное исследование функции и построить её график.

Решение : понеслась нелёгкая:

1) Функция определена и непрерывна на всей числовой прямой: .

Значит, данная функция является нечетной, её график симметричен относительно начала координат.

Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют

Для функции, содержащей экспоненту, типично раздельное исследование «плюс» и «минус бесконечности», однако нашу жизнь облегчает как раз симметрия графика – либо и слева и справа есть асимптота, либо её нет. Поэтому оба бесконечных предела можно оформить под единой записью. В ходе решения используем правило Лопиталя :

Прямая (ось ) является горизонтальной асимптотой графика при .

Обратите внимание, как я хитро избежал полного алгоритма нахождения наклонной асимптоты: предел вполне легален и проясняет поведение функции на бесконечности, а горизонтальная асимптота обнаружилась «как бы заодно».

Из непрерывности на и существования горизонтальной асимптоты следует тот факт, что функция ограничена сверху и ограничена снизу .

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства.

Здесь тоже сокращаем решение:
График проходит через начало координат.

Других точек пересечения с координатными осями нет. Более того, интервалы знакопостоянства очевидны, и ось можно не чертить: , а значит, знак функции зависит только от «икса»:
, если ;
, если .

4) Возрастание, убывание, экстремумы функции.


– критические точки.

Точки симметричны относительно нуля, как оно и должно быть.

Определим знаки производной:


Функция возрастает на интервале и убывает на интервалах

В точке функция достигает максимума: .

В силу свойства (нечётности функции) минимум можно не вычислять:

Поскольку функция убывает на интервале , то, очевидно, на «минус бесконечности» график расположен под своей асимптотой. На интервале функция тоже убывает, но здесь всё наоборот – после перехода через точку максимума линия приближается к оси уже сверху.

Из вышесказанного также следует, что график функции является выпуклым на «минус бесконечности» и вогнутым на «плюс бесконечности».

После этого пункта исследования прорисовалась и область значений функции:

Если у вас возникло недопонимание каких-либо моментов, ещё раз призываю начертить в тетради координатные оси и с карандашом в руках заново проанализировать каждый вывод задания.

5) Выпуклость, вогнутость, перегибы графика.

– критические точки.

Симметрия точек сохраняется, и, скорее всего, мы не ошибаемся.

Определим знаки :


График функции является выпуклым на и вогнутым на .

Выпуклость/вогнутость на крайних интервалах подтвердилась.

Во всех критических точках существуют перегибы графика. Найдём ординаты точек перегиба, при этом снова сократим количество вычислений, используя нечётность функции:

В данной статье рассмотрим схему исследования функции, а также приведем примеры исследования на экстремумы, монотонность, асимптоты данной функции.

Схема

  1. Область существования (ОДЗ) функции.
  2. Пересечение функции (если имеется) с осями координат, знаки функции, четность, периодичность.
  3. Точки разрыва (их род). Непрерывность. Асимптоты вертикальные.
  4. Монотонность и точки экстремума.
  5. Точки перегиба. Выпуклость.
  6. Исследование функции на бесконечности, на асимптоты: горизонтальные и наклонные.
  7. Построение графика.

Исследование на монотонность

Теорема. Ежели функция g непрерывна на , дифференцированная на (а; b) и g’(x) ≥ 0 (g’(x)≤0) , xє(а; b) , то g возрастающая (убывающая) на .

Пример:

y = 1: 3x 3 - 6: 2x 2 + 5x.

ОДЗ: хєR

y’ = x 2 + 6x + 5.

Найдем промежутки постоянных знаков y’ . Поскольку y’ - элементарная функция, то она может менять знаки только в точках, где она превращается в ноль или не существует. Ее ОДЗ: хєR .

Найдем точки, производная в которых равняется 0 (нулю):

y’ = 0;

x = -1; -5.

Итак, y растущая на (-∞; -5] и на [-1; +∞), y нисходящая на .

Исследование на экстремумы

Т. x 0 именуют точкой максимума (max) на множестве А функции g тогда, когда принимается в этой точке функцией значение наибольшее g(x 0) ≥ g(x), xєА .

Т. x 0 именуют точкой минимума (min) функции g на множестве А тогда, когда принимается в этой точке функцией значение наименьшее g(x 0) ≤ g(x), xєА.

На множестве А точки максимума (max) и минимума (min) именуются точками экстремума g . Такие экстремумы еще называют абсолютными экстремумами на множестве .

Если x 0 - экстремума точка функции g в некотором своем округе, то x 0 именуется точкой локального или местного экстремума (max или min) функции g.

Теорема (условие необходимое). Если x 0 - точка экстремума (локального) функции g , то производная не существует или равна в этой т. 0 (нулю).

Определение. Критическими именуют точки с несуществующей или равной 0 (нулю) производной. Именно данные точки подозрительны на экстремум.

Теорема (условие достаточное № 1). Если функция g непрерывна в некотором округе т. x 0 и знак меняет чрез эту точку при переходе производная, то данная точка есть т. экстремума g .

Теорема (условие достаточное № 2). Пускай функция в некотором округе точки дифференцируема дважды и g’ = 0, а g’’ > 0 (g’’ < 0) , тогда эта точка есть точкой максимума (max) или минимума (min) функции.

Исследование на выпуклость

Функцию называют выпуклой вниз (или вогнутой) на интервале (а, b) тогда, когда график функции располагается не выше секущей на промежутке для любых x с (а, b) , которая проходит чрез эти точки.

Функция будет выпуклой строго вниз на (а, b) , если - график лежит ниже секущей на промежутке.

Функцию называют выпуклой вверх (выпуклой) на промежутке (а, b) , если для любых точек с (а, b) график функции на промежутке лежит не ниже секущей, проходящей через абсциссы в этих точках .

Функция будет строго выпуклой вверх на (а, b ), если - график на промежутке лежит выше секущей.

Если функция в некотором округе точки непрерывна и через т. x 0 при переходе функция изменяет выпуклость то эта точка именуется точкой перегиба функции.

Исследование на асимптоты

Определение. Прямую называют асимптотой g(x) , если при бесконечном удалении от начала координат к ней приближается точка графика функции: d(M,l).

Асимптоты могут быть вертикальные, горизонтальные и наклонные.

Вертикальная прямая с уравнением x = x 0 будет асимптотой вертикальной графика функции g , если в т. x 0 бесконечный разрыв, то есть хотя бы одна левая или правая граница в этой точке - бесконечность.

Исследование функции на отрезке на значение наименьшее и наибольшее

Если функция непрерывна на , то по теореме Вейерштрасса существует значение наибольшее и значение наименьшее на этом отрезке, то есть существуют точки, которые принадлежат такие, что g(x 1) ≤ g(x) < g(x 2), x 2 є . Из теорем про монотонность и экстремумы получаем следующую схему исследования функции на отрезке на наименьшее и наибольшее значение.

План

  1. Найти производную g’(x) .
  2. Искать значение функции g в этих точках и на концах отрезка.
  3. Найденные значения сравнить и выбрать наименьшее и наибольшее.

Замечание. Если нужно произвести исследование функции на конечном интервале (а, b) , или на бесконечном (-∞; b); (-∞; +∞) на max и min значение, то в плане вместо значений функции на концах промежутка ищут соответствующие односторонние границы: вместо f(a) ищут f(a+) = limf(x) , вместо f(b) ищут f(-b) . Так можно найти ОДЗ функции на промежутке, потому что абсолютные экстремумы не обязательно существуют в данном случае.

Применение производной к решению прикладных задач на экстремум некоторых величин

  1. Выражают данную величину через другие величины из условия задачи так, чтобы она была функцией только от одной переменной (если это возможно).
  2. Определяют промежуток изменения этой переменной.
  3. Проводят исследование функции на промежутке на max и min значения.

Задача. Нужно построить площадку прямоугольной формы, использовав а метров сетки, у стены так, чтобы с одной стороны она прилегала к стене, а с остальных трех была ограждена сеткой. При каком соотношении сторон площадь такой площадки будет наибольшей?

S = xy - функция 2 переменных.

S = x(a - 2x) - функция 1-й переменной; x є .

S = ax - 2x 2 ; S" = a - 4x = 0, xєR, x = a: 4.

S(a: 4) = a 2: 8 - наибольшее значение;

S(0) =0.

Найдем другую сторону прямоугольника: у = a: 2.

Соотношение сторон: y: x = 2.

Ответ. Наибольшая площадь будет равна a 2 /8 , если сторона, которая параллельна стене, в 2 раза больше другой стороны.

Исследование функции. Примеры

Пример 1

Имеется y=x 3: (1-x) 2 . Произвести исследование.

  1. ОДЗ: хє(-∞; 1) U (1; ∞).
  2. Общего вида функция (ни четная, ни нечетная), относительно точки 0 (нуль) не симметрична.
  3. Знаки функции. Функция элементарная, поэтому может менять знак только в точках, где она равна 0 (нулю), или не существует.
  4. Функция элементарная, поэтому непрерывная на ОДЗ: (-∞; 1) U (1; ∞).

Разрыв: х = 1;

limx 3: (1- x) 2 = ∞ - Разрыв 2-го рода (бесконечный), поэтому есть вертикальная асимптота в точке 1;

х = 1 - уравнение асимптоты вертикальной.

5. y’ = x 2 (3 - x) : (1 - x) 3 ;

ОДЗ (y’): x ≠ 1;

х = 1 - точка критическая.

y’ = 0;

0; 3 - точки критические.

6. y’’ = 6x: (1 - x) 4 ;

Критические т.: 1, 0;

x = 0 - т. перегиба, y(0) = 0.

7. limx 3: (1 - 2x + x 2) = ∞ - нет горизонтальной асимптоты, но может быть наклонная.

k = 1 - число;

b = 2 - число.

Следовательно, есть асимптота наклонная y = x + 2 на + ∞ и на - ∞.

Пример 2

Дано y = (x 2 + 1) : (x - 1). Произвести и сследование. Построить график.

1. Область существования - вся числовая прямая, кроме т. x = 1 .

2. y пересекает OY (если это возможно) в т. (0;g(0)) . Находим y(0) = -1 - т. пересечения OY .

Точки пересечения графика с OX находим, решив уравнение y = 0 . Уравнение корней действительных не имеет, поэтому эта функция не пересекает OX .

3. Функция непериодическая. Рассмотрим выражение

g(-x) ≠ g(x), и g(-x) ≠ -g(x) . Это означает, что это общего вида функция (ни четная, ни нечетная).

4. Т. x = 1 разрыв имеет второго рода. Во всех остальных точках функция непрерывна.

5. Исследование функции на экстремум:

(x 2 - 2x - 1) : (x - 1) 2 = y"

и решим уравнение y" = 0.

Итак, 1 - √2, 1 + √2, 1 - точки критические или точки возможного экстремума. Эти точки разбивают числовую прямую на четыре интервала.

На каждом интервале производная имеет определенный знак, который можно установить методом интервалов или вычисления значений производной в отдельных точках. На интервалах (-∞; 1 - √2 ) U (1 + √2 ; ∞) , положительная производная, значит, функция растет; если (1 - √2 ; 1) U (1; 1 + √2 ) , то функция убывает, потому что на этих интервалах производная отрицательная. Через т. x 1 при переходе (движение следует слева направо) изменяет производная знак с "+" на "-", поэтому, в этой точке есть локальный максимум, найдем

y max = 2 - 2√2 .

При переходе через x 2 изменяет производная знак с "-" на "+", поэтому, в этой точке есть локальный минимум, причем

y mix = 2 + 2√2.

Т. x = 1 не т. экстремума.

6. 4: (x - 1) 3 = y"".

На (-∞; 1 ) 0 > y"" , следственно, на этом интервале кривая выпуклая; если xє(1 ; ∞) - кривая вогнута. В точке 1 не определена функция, поэтому эта точка не точка перегиба.

7. Из результатов пункта 4 следует, что x = 1 - асимптота вертикальная кривой.

Горизонтальные асимптоты отсутствуют.

x + 1 = y - асимптота наклонная данной кривой. Других асимптот нет.

8. Учитывая проведенные исследования, строим график (см. рисунок выше).

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.