Применение ультразвука. Звук, ультразвук, инфразвук и их использование Применение ультразвука и инфразвука

Применение ультразвука. Звук, ультразвук, инфразвук и их использование Применение ультразвука и инфразвука

Юров Павел

Человек живет в мире звуков. Звук – это то, что слышит ухо. Мы слышим голоса людей, пение птиц, звуки музыкальных инструментов, шум леса, гром во время грозы. Звучат работающие машины, движущийся транспорт и т.д. Что такое звук? Как возникает? Чем одни звуки отличаются от других? Ответы на эти вопросы хотели узнать люди.

Раздел физики, в котором изучаются звуковые явления, называется акустикой.

Услышав какой-то звук, мы обычно можем установить, что он дошел до нас от какого-то источника. Рассматривая этот источник, мы всегда найдем в нем что-то колеблющееся. Если, например, звук исходит от репродуктора, то в нем колеблется мембрана – легкий диск, закрепленный по его окружности. Если звук издает музыкальный инструмент, то источник звука – это колеблющийся столб воздуха и другие.

Скачать:

Предварительный просмотр:

Введение……………………………………………………………………………….........................3

  1. Из истории звука………………………………………………………………………………3
  2. Что такое звук?………………………………………………………………...........................4

2.1 Общая акустика изучает вопросы возникновения, распространения и поглощение звука…..5

  1. Звук и слух……………………………………………………………………………………..6
  1. Музыкальная акустика…………………………………………………………………...7
  2. Звуковые удары…………………………………………………………………………...8

3.3 Шумы………………………………………………………………………………………8

  1. Шумовое загрязнение…………………………………………………………………….9
  2. Действие шума на организм человека……………………………..…………………...11
  1. Распространение звука………………………………………………………........................12
  2. Ультразвуки и инфразвуки………………………………………………………………….14
  1. Звуколокация……………………………………………………………………………………..14
  2. Применение ультразвуков и звуков……………………………………………………15
  1. Применение инфразвука………………………………………………………..15
  2. Применение ультразвука………………………………………………………18
  1. Звукотерапия – лечение звуком……………………………………………………………20
  2. Цифровые наркотики и их влияние на организм человека……………………………...22

Заключение………………………………………………………………………………………….26

Литература…………………………………………………………………………………………..27

ВВЕДЕНИЕ

Человек живет в мире звуков. Звук – это то, что слышит ухо. Мы слышим голоса людей, пение птиц, звуки музыкальных инструментов, шум леса, гром во время грозы. Звучат работающие машины, движущийся транспорт и т.д. Что такое звук? Как он возникает? Чем одни звуки отличаются от других? Ответы на эти вопросы хотели узнать люди.

Раздел физики, в котором изучаются звуковые явления, называется акустикой .

Услышав какой-то звук, мы обычно можем установить, что он дошел до нас от какого-то источника. Рассматривая этот источник, мы всегда найдем в нем что- то колеблющееся. Если, например, звук исходит от репродуктора, то в нем колеблется мембрана – легкий диск, закрепленный по его окружности. Если звук издает музыкальный инструмент, то источник звука – это колеблющийся столб воздуха и другие.

  1. ИЗ ИСТОРИИ ЗВУКА.

Звуки – наши неизменные спутники. Они по - разному воздействуют на человека: радуют и раздражают, успокаивают и пугают своей неожиданностью. В глубокой древности звук казался людям удивительным, таинственным порождением сверхъестественных сил. Они верили, что звуки могут укрощать диких животных, сдвигать скалы и горы, преграждать путь воде, вызывать дождь, творить другие чудеса.

Жрецы Древнего Египта, заметив удивительное воздействие музыки на человека, использовали ее в своих целях. Ни один праздник не обходился без ритуальных песнопений. Позже музыка пришла в христианские храмы.

Древние индийцы раньше других овладели высокой музыкальной культурой. Они разработали и широко использовали нотную грамоту задолго до того, как она появилась в Европе. Их музыкальная гамма также состояла из семи нот, но названия у них были другие: «са», «ре», «га», «ма», «па», «дха», «ни». Считалось, что каждая из них отражает определенное духовное состояние: «са» и «ма»- спокойствие и умиротворение, «га» и «дха»- торжественность, «ре»- гнев, «па»- радость, «ни»- печаль.

Понять и изучить звук люди стремились с незапамятных времен.

Греческий ученый и философ Пифагор, живший две с половиной тысячи лет назад, ставил различные опыты со звуками. Он впервые доказал, что низкие тона в музыкальных инструментах присуще длинным струнам. При укорочении струны вдвое звук ее повысится на целую октаву. Открытие Пифагора положило начало науки об акустики. Первые звуковые приборы были созданы в театрах

Древней Греции и Рима: актеры вставляли в свои маски маленькие рупоры для усиления звука. Известно также применение звуковых приборов в египетских храмах, где были «шепчущие» статуи богов.

Выявление Пифагором и его ученикам гармонические сочетания звуков легли в основу более поздних представлении о так называемой гармонии Вселенной. Согласно с этим представлением небесные тела и планеты расположены относительно друг друга в соответствии с музыкальными интервалами и излучают «музыку сфер». Считалось, например, что Сатурн издает самые низкие звуки, звуки Юпитера можно сравнить с басом, Меркурия-с фальцетом, Марса - с тенором, Земли - с контральто, Венеры - с сопрано. У этой теории была долгая жизнь. Ее признали даже в эпоху Возрождения, когда уже были получены первые вполне научные сведения о природе и движения планет. Отголоски этой теории можно обнаружить в трудах великого Кеплера, открывшего закон движения планет и сыгравшего огромную роль в развитии физики и астрономии.

Существует так называемые вихревые звуки: свист ветра в проводах, такелажа кораблей, ветвях деревьев, завывание в трубах, на гребнях скал, в расщелинах и узких оврагах. Люди издавна пользовались ими - на охоте, в быту. В Древнем Китае существовал обычай выпускать голубей с привязанными к их хвостам маленькие бамбуковые палочки. Воздушный поток, проходивший через трубочку, вызывал нежное посвистывание. Подобные звуки издает и тростниковая дудочка, которая была прообразом зародившейся в Древнем Египте флейты. Позже ее стали называть флейтой Пана - в честь древнегреческого бога лесов.

Легенда гласит, что в Иерусалиме когда-то находилась «стозвучная» двурогая труба. Во время жертвоприношения разжигали костер, теплый воздух от которого устремлялся в трубу, заставляя ее выть. Мощные воющие звуки возникали также, когда в нее врывались вихри от пламени пожаров при осаде города.

В 1831 году в Пятигорске была построена беседка, названная Эоловой арфой. Внутри нее находились две арфы, которые с помощью флюгера разворачивались против ветра и под действием воздушного потока издавали гармонические звуки.

В Лондоне в кафедральном соборе святого Павла есть большой, диаметром почти 50 метров, круглый зал. Человек, находящийся на одной стороне, может говорить шепотом и его превосходно услышат на другой стороне. Ученые после тщательных исследований дали научное объяснение этому явлению. Оказывается, что при радиусе закругления стенки, равном 25 метров, звук распространяется вдоль нее, как бы стелясь, и доходит до слушателя почти без потерь. При этом звук не отражается в сторону.

В некоторых музеях хранятся вазы античной работы, основное назначение которых - не художественное украшение, а отражение, усиление и сосредоточение звука. Сделанные из алебастра, такие вазы устанавливались в больших залах, театрах, собраниях и даже на площадях. Ораторам не надо было напрягать голос: слушатели воспринимали речь на всем, пространстве достаточно далеко.

В 17 веке строители вместо ваз применяли звукопроводы в виде труб из цемента. В частности, подобные звукопроводы можно найти в сооружениях, возведенных по проектам Растрелли. Так собор Смольного монастыря весь в звукопроводах. Предполагается, что они есть и в залах Зимнего дворца.

По всей вероятности, подобные хитроумные акустические устройства были известны и в древности. Легенда наделила Сиракузского тирана Дионисия способностью слышать в своем дворце даже легкий шепот. В это нетрудно поверить, если допустить, что во дворце были керамические звукособиратели и усилители.

  1. ЧТО ТАКОЕ ЗВУК?

Что же такое звук? Звук - это распространяющиеся в упругих средах: газах, жидкостях и твердых телах - механические колебания, воспринимаемые органами слуха.

Рассмотрим примеры, поясняющие физическую сущность звука. Струна музыкального инструмента передает свои колебания окружающим частицам воздуха. Эти колебания будут распространяться все дальше и дальше, а достигнув, уха, вызовут колебания барабанной перепонки. Мы услышим звук. Таким образом, то, что мы называем звуком, представляет собой быструю смену, частицы воздуха не перемещаются, они только колеблются, попеременно смещаясь в одну и другую сторону на очень небольшие расстояния.

Но изолированных колебании одного тела не существует. В каждой среде в результате взаимодействия между частицами колебания передаются все новым и новым частицам, т.е. в среде распространяются звуковые волны.

Другим простым примером колебательного движения могут служить колебания маятника. Если маятник отклонить от его положения равновесия, а затем отпустить то он будет совершать свободные колебания. Под действием силы тяжести маятник возвращается в свое первоначальное положение, по инерции проходит исходную точку и поднимается вверх, при этом сила тяжести будет тормозить его движение. В точке максимального отклонения маятник становится и через мгновение начнет движение в обратном направлении. Циклы колебаний маятника непрерывно повторяются.

Колебания могут быть периодическими, когда изменения повторяются через равный промежуток времени и не периодическими когда нет полного повторения процесса изменения. Среди периодических колебаний очень важную роль играют гармонические колебания . В зависимости от процесса различают колебания механические, электрического тока и напряжения звуковых колебаний.

Наиболее наглядны волны на поверхности воды. Если бросить камень в воду, вначале появится углубление, затем - возвышение воды, а потом возникают волны, представляющие собой последовательно чередующиеся гребни и впадины. Увеличиваясь по фронту, они распространяются по всем направлениям, но отдельные частицы не передвигаются вместе с волнами, а колеблются только в небольших пределах около некоторого неизменного положения. В этом можно убедиться, например, наблюдая за щепкой, подпрыгивающую на волнах. Она будет подниматься и опускаться, т.е. колебаться, пропуская под собой бегущую волну.

Волны бывают продольные и поперечные ; в первом случае колебания частиц среды совершаются вдоль направления распространения волны, во втором - поперек него.

Человеческое ухо способно воспринимать колебания с частотой примерно от 200 до 20000 колебаний в секунду. Соответственно этому механические колебания с указанными частотами называются звуковыми, или акустическими .

Вопросы, которыми занимается акустика, очень разнообразны. Некоторые из них связаны со свойствами и особенностями органов слуха.

2.1 Общая акустика изучает вопросы возникновения, распространения и поглощение звука.

Физическая акустика занимается изучением самих звуковых колебаний, а за последние десятилетия охватила и колебания, лежащие за пределами слышимости (ультраакустика). При этом она широко пользуется разнообразными методами превращения механические колебания, электрические и обратно. Применительно к звуковым колебаниям, число задач физической акустики входит и изучение физических явлений, обусловливающих те или иные качества звука, различимые на слух.

Электроакустика, или техническая акустика , занимается получением, передачи, приемом и записью звуков при помощи электрических приборов.

Архитектурная акустика изучает распространение звука в помещениях, влияние на звук размеров и формы помещений, свойств материалов, покрывающих стены и потолки и. т. д. При этом имеется в виду слуховое восприятие звука.

Музыкальная акустика исследует природу музыкальных звуков, а также музыкальные настрой и системы. Мы различаем, например, музыкальные звуки (пение, свист, звон, звучание струн) и шумы (треск, стук, скрип, шипение, гром). Музыкальные звуки более простые, чем шумы. Комбинация музыкальных звуков может вызвать ощущение шума, но никакая комбинация не даст музыкального звука.

Гидроакустика (морская акустика) занимается изучением явлений, происходящих в водной среде, связанных с излучением, приемом и распространением акустических волн. Она включает вопросы разработки и создания акустических приборов, предназначенных для использования в водной среде.

Атмосферная акустика изучает звуковые процессы в атмосфере, в частности распространение звуковых волн, условие сверхдальнего распространения звука.

Физиологическая акустика исследует возможности органов слуха, их устройство и действие. Она изучает образование звуков органами речи и восприятие звуков органами слуха, а также вопросы анализа и синтеза речи.

Создание систем; способных анализировать человеческую речь - важный этап на пути проектирования машин, в особенности роботов - манипуляторов и электронно-вычислительных машин, послушным устным распоряжениям оператора.

Аппарат для синтеза речи может дать большой экономический эффект. Если по международным телефонным каналам, передавать не сами речевые сигналы, а коды, полученные в результате их анализа, а на выходе линий синтезировать речь, потому же каналу можно передавать несколько раз больше информации. Правда, абонент не услышит настоящего голоса собеседника, но слова - то будут те же, что были сказаны в микрофон. Конечно, это не совсем подходит для семейных разговоров, но удобно для деловых бесед, а именно они - то и перегружают каналы связи.

Биологическая акустика рассматривает вопросы звукового и ультразвукового общения животных и изучает механизм локации, которым они пользуются, исследует так же проблемы шумов, вибрации и борьбы сними за оздоровление окружающей среды.

  1. ЗВУК и СЛУХ.

Основные физические характеристики любого колебательного движения - период и амплитуды колебания, а применительно к звуку - частота и интенсивность колебаний.

Периодом колебания называется время, в течение которого совершается полное колебание, когда, например, качающийся маятник из крайнего левого положения. Частота колебаний - это число полных колебаний (периодов) за одну секунду. Такую единицу называют герц (Гц). Частота - одна из основных характеристик, по которой мы различаем звуки. Чем больше частота колебаний, тем более высокий тон.

Человеческое ухо наиболее чувствительно к звукам с частотой от 1000 до 3000 Гц. Наибольшая острота слуха наблюдается в возрасте 15-20 лет. С возрастом слух ухудшается. У человека до 40 лет наибольшая чувствительность находится в области 3000 Гц, от 40 до 60 лет- 2000 Гц, старше 60 лет- 1000 Гц.

В пределах до 500 Гц мы способны различить понижение или повышение частоты даже на 1 Гц. На более высоких частотах наш слуховой аппарат становится менее восприимчивым к такому незначительному изменению частоты.

Так, после 2000 Гц мы можем отличить один звук от другого только, когда разница в частоте будет не менее 5 Гц. При меньшей разнице звуки нам будут казаться одинаковыми. Однако правил без исключения почти не бывает. Есть люди, обладающие необычайно тонким слухом. Одаренный музыкант может уловить изменение звука всего на какую-то долю колебаний.

С периодом и частотой связано понятие о длине волны , т.е. в расстоянии между двумя гребнями (или впадинами). Наглядное представление об этом понятии дают волны, распространяющиеся по поверхности воды.

Звуки могут отличаться один от другого и по тембру . Это значит, что одинаковые звуки по высоте тона могут звучать по-разному, потому что основной тон звука сопровождается, как правило, второстепенными тонами, которые всегда выше по частоте. Они предают основному звуку дополнительную окраску и называются обертонами . Иными словами, темброкачественная характеристика звука. Чем больше обертонов налагается на основной тон, тем «богаче» звук в музыкальном отношении. Если основной звук сопровождается близкими к нему по высоте обертонами, то сам звук будет мягким, «бархатным». Когда же обертоны значительно выше основного тона, появляется «металличность» в голосе или звуке.

Органы слуха благодаря своему замечательному устройству легко отличают одно колебание от другого, голос близкого или знакомого человека от голосов других людей. Потому, как говорит человек, мы судим о его настроении, состоянии, переживаниях. Радость, боль, гнев, испуг, страх перед опасностью - все это можно услышать, даже не видя кому, принадлежит голос.

Амплитудой колебания называется наибольшее отклонение от положения равновесия при гармонических колебаниях. На примере с маятником амплитуда - максимальное отклонение его от положения равновесия в крайнее левое или правое положение. Амплитуда колебания определяет интенсивность (силу) звука. С интенсивностью звука связана громкость . Чем больше интенсивность звука, тем он громче. Однако понятия о громкости и интенсивности не равнозначны. Громкость звука - это мера силы слухового ощущения, вызываемого звуком.

Звук одинаковой интенсивности может создавать у различных людей неодинаковые по своей громкости слуховые восприятия. Так, например, звуки, одинаковые по интенсивности, но различающиеся по высоте, воспринимаются ухом с разной громкостью в зависимости от особенностей слухового аппарата. Мы не воспринимаем как очень слабые, так и очень сильные звуки - каждый человек обладает так называемым порогом слышимости , который определяется наименьшей интенсивностью звука, необходимой для того, чтобы звук был услышан.

Звуки, наиболее хорошо воспринимаемые по частоте, лучше различаются и по громкости. При частоте 32 Гц по громкости различаются три звука, при частоте 125 Гц - 94 звука, а при частоте 1000 Гц - 374. Увеличение это не беспредельно. Начиная с частоты 8000 Гц, число различимых звуков по громкости уменьшается. Например, при частоте 16000 Гц человек может различить только 16 звуков.

Звуки очень большой интенсивности человек перестает слышать и воспринимает их как ощущение давления или боли. Такую силу звука называют порогом болевого ощущения . Исследования показали, что интенсивность, при которой звуки разной частоты вызывают болевое ощущение, различна.

Если силу звука увеличить в миллион раз, громкость возрастает только в несколько сотен раз. Выяснилось, что ухо преобразует силу звука в громкость, по сложному логарифмическому закону ограждая свои внутренние части от чрезмерных воздействий. Имеется еще одна особенность человеческого уха. Если к звуку определенной громкости добавить звук той же или близкой к ней частоты, то общая громкость окажется меньше математической суммы тех же громкостей. Одновременно звучащие звуки как бы компенсируют, или маскируют друг друга. А звуки, далеко отстоящие по частоте, не влияют друг на друга, и их громкость оказывается максимальной. Эту закономерность композиторы используют для достижения наибольшей мощности звучания оркестра.

3.1 Музыкальная акустика.

Реальный звук является наложением гармонических колебаний с набором частот, который определяет акустический спектр звуковой волны.

Различают три вида звуковых колебаний: музыкальные звуки, звуковые удары и шумы. Периодические колебания определённой частоты вызывают простой музыкальный тон. Сложные музыкальные звуки - это сочетания отдельных тонов. Тон, соответствующий наименьшей частоте сложного музыкального звука, называют основным тоном , а остальные тоны - обертонами . Если частота обертона кратна частоте основного тона, то обертон называют гармоническим. При этом основной тон с минимальной частотой 70 называют первой гармоникой, обертон, с частотой 270 - второй гармоникой и т.д.

Относительная интенсивность, звуковой волны, а так же характер нарастания и спада их амплитуд во время затухания, определяют окраску (или тембр) звука. Различные музыкальные инструменты (рояль, скрипка флейта и т.п.) отличаются тембром издаваемых этими инструментами звуков. Совокупность звуков разной высоты, которыми пользуются в музыке, составляет музыкальный строй. Относительный музыкальный строй состоит из звуков, находящихся в определённых соотношениях. Если звуки музыкального строя заданы высотой исходного тона, с которого начинается настройка инструментов, то такой строй называют абсолютным . Исходный (стандартный) тон в европейском абсолютном музыкальном строе равен 440 Гц (звук "ля" первой октавы). Относительное различие в высоте двух тонов, обусловленное соотношением между частотами этих тонов, называют интервалом . Соотношение частот 2:1 определяет октаву, 5: 4 - большую терцию, 4: 3 - кварту, 3: 2 - квинту.

Если длина струны гитары равна L, то возникшая волна должна пройти путь 2L, чтобы вернуться в исходное положение, имея исходное направление движения и исходную форму после двух отражений от обоих концов. Если υ - скорость волны, то расстояние 2L волна будет пробегать ν раз в секунду. Частота ν - это высота тона струны. Если прижать пальцем струну к грифу гитары, положив палец на лад, который ускорит свободную часть струны в 2 раза, то и высота тона удвоится. Нота повысится на октаву, что соответствует удвоению частоты.

Отношение высот полутонов равно корню двенадцатой степени из двух. Этим и определяется расположение ладов на грифе гитары. В принятой европейской музыкальной практике октава делится на 12 равных интервалов, которые составляют равномерно темперированный строй.

Кроме темперированного строя различают два точных строя - пифагорейский и чистый , в основе которых лежат интервалы, частотные коэффициенты которых представляют собой отношения первых соседних чисел натурального ряда. Пифагорейский строй основан на октаве и чистой квинте с частотным коэффициентом 3:2, а чистый строй - на октаве, квинте и большой терции с частотным коэффициентом 5:4. Пифагорейский строй более выразительно передаёт мелодию, а чистый лучше соответствует аккордовой музыке. Для исполнения сложной музыки используют компромиссно темперированные строи и равномерно- темперированный 12-ступенчатый музыкальный строй.

Музыка других, неевропейских народов отличается другими интервальными соотношениями и другим числом звуков в октаве.

3.2 Звуковые удары

Ударные волны возникают при выстреле, взрыве, электрическом разряде и т.п. Основной особенностью ударной волны является резкий скачок давления на фронте волны. В момент прохождения ударной волны максимум давления в данной точке возникает практически мгновенно за время порядка 10-10сек. При этом одновременно скачком изменяются плотность и температура среды. Затем давление медленно падает. Мощность ударной волны зависит от силы взрыва. Скорость распространения ударных волн может быть больше скорости звука в данной среде. Если, например, ударная волна увеличивает давление в полтора раза, то при этом температура повышается на 35 0 С и скорость распространения фронта такой волны примерно равна 400 м/с. Стены средней толщины, которые встречаются на пути такой ударной волны будут разрушены.

Мощные взрывы будут сопровождаться ударными волнами, которые создают в максимальной фазе фронта волны давление, в 10 раз превышающее атмосферное. При этом плотность среды увеличивается в 4 раза, температура повышается на 500 0 C, и скорость распространения такой волны близка к 1 км/с. Толщина фронта ударной волны имеет порядок длины свободного пробега молекул (10 -7 - 10 -8 м), поэтому при теоретическом рассмотрении можно считать, что фронт ударной волны представляет собой поверхность взрыва, при переходе через которую параметры газа изменяются скачком.

Ударные волны так же возникают, когда твёрдое тело движется со скоростью, превышающей скорость звука. Перед самолётом, который летит со сверхзвуковой скоростью, образуется ударная волна, которая является основным фактором, определяющим сопротивление движению самолёта. Чтобы это сопротивление ослабить, сверхзвуковым самолётам придают стреловидную форму.

Быстрое сжатие воздуха перед движущимся с большой скоростью предметом приводит к повышению температуры, которая с нарастанием скорости предмета - увеличивается. Когда скорость самолёта достигает скорость звука, температура воздуха достигает 60 0 C. При скорости движения вдвое выше скорости звука, температура повышается на 240 0 C, а при скорости, близкой к тройной скорости звука - становится 800 0 С.

Скорости близкие к 10 км/с приводят к плавлению и превращению движущегося тела в газообразное состояние. Падение метеоритов со скоростью в несколько десятков километров в секунду приводит к тому, что уже на высоте 150 - 200 километров, даже в разрежённой атмосфере метеоритные тела заметно нагреваются и светятся. Большинство из них на высотах 100 - 60 километров полностью распадаются.

  1. Шумы.

Наложение большого количества колебаний беспорядочно смешанных одно относительно другого и произвольно изменяющих интенсивность во времени, приводят к сложной форме колебаний. Такие сложные колебания, состоящие из большого числа простых звуков различной тональности, называют шумами . Примерами могут служить шелест листьев в лесу, грохот водопада, шум на улице города. К шумам также можно отнести звуки, выражаемые согласными. Шумы могут отличаться распределением по силе звука, по частоте и продолжительности звучания во времени. Длительное время звучат шумы, создаваемые ветром, падающей воды, морским прибоем.

Относительно кратковременны раскаты грома, рокот волн - это низкочастотные шумы . Механические шумы могут вызываться вибрацией твёрдых тел. Возникающие при лопании пузырьков и полостей в жидкости звуки, которые сопровождают процессы кавитации , приводят к кавитационным шумам.

В прикладной акустике изучение шумов проводится в связи с проблемой борьбы с их вредностью, для усовершенствования шумопеленгаторов в гидроакустике, а также для повышения точности измерений в аналоговых и цифровых устройствах обработки информации. Продолжительные сильные шумы (порядка 90 дБ и более) оказывают вредное действие на нервную систему человека, шум морского прибоя или леса - успокаивающее.


3.1.1. Шумовое загрязнение

Сильный продолжительный и особенно постоянный шум – скрытый и опасный враг человека и других живых существ. Значительный и продолжительный шум ограничивает продолжительность труда, приводит к преждевременному расстройству и разрушению слухового аппарата, развитию сердечнососудистых заболеваний (гипертонии, аритмии), поражению нервной системы, язвенной болезни и другим расстройствам. Наиболее распространённые симптомы шумового влияния – раздражительность, рассеянность и, как следствие, невроз. Шум обостряет хронические заболевания. Любопытно, что во время сна шум оказывает более негативное воздействие, чем в часы бодрствования.

Воздействие шума на человека определяется его уровнем (громкостью, интенсивностью) и высотой составляющих его звуков, а также продолжительностью воздействия. Понятия «интенсивность» и «громкость шума» принимаются в быту за синонимы, однако не совсем тождественны: интенсивность – объективная характеристика звука; громкость – характеристика его субъективного восприятия. Установлено, что громкость звука возрастает гораздо медленнее, чем интенсивность. Уровень шума выражается в децибелах (дБ). 1 дБ – это отношения давления, которое оказывают звуковые волны на барабанную перепонку уха, к предельно низкому, ещё ощущаемому ухом давлению.

Минимальная интенсивность звука, воспринимаемая ухом, называется порогом слышимости . Порог слышимости различен для звуковых колебаний разных частот. Органы слуха человека наиболее чувствительны к частоте 1000–3000 Гц. Верхнюю границу интенсивности звука, которую человек ещё способен воспринимать, называют порогом болевого ощущения . Шум 0 дБ создаёт зимний лес в безветренную погоду. Шум 1 дБ еле уловим при исключительно остром слухе. Шум от нормального дыхания оценивается как 10 дБ, и такой уровень принимают за порог слышимости людей с нормальным слухом. Шёпот создаёт шум 20 дБ. Отдых и сон считают полноценным, когда шум не превышает 25–30 дБ, в учреждениях и на предприятиях шум достигает 40–60 дБ. На шумных предприятиях шум достигает 70 дБ. Кратковременно допустим шум 80 дБ. Более сильный шум вреден, болевой порог лежит обычно в пределах 120–130 дБ, за которым возможно повреждение слухового аппарата. Согласно санитарным нормам, уровень шума около зданий днём не должен превышать 55 дБ, а ночью (с 23 до 7 ч) 45 дБ, в квартирах соответственно 40 и 30 дБ.

В диапазоне слышимых человеком звуков (от 16 до 20 000 Гц) самое неблагоприятное воздействие на человека оказывает шум, в спектре которого преобладают высокие частоты (выше 800 Гц). Ультразвук (выше 20 кГц) и инфразвук (ниже 16–25 Гц) не воспринимаются человеческим ухом, но они также могут оказывать негативное влияние. По данным австрийских исследователей, шум в больших городах сокращает продолжительность жизни их жителей на 10–12 лет. Поставлены опыты, которые доказывают, что повышенный шум неблагоприятно влияет и на развитие растений. Уровни шумов от различных источников и реакция организма на акустические воздействия приведены в таблице.

Для человека практически безвреден шум 20–30 дБ, допустимая граница – 80 дБ, 130 дБ вызывают болевые ощущения, 150 дБ уже непереносимы.

Суммарный шум от больших транспортных потоков составляет 90–95 дБ (высокий уровень) и стоит на магистралях почти круглосуточно. От транспортного шума страдают, прежде всего, жители городов, а также посёлков, находящихся вблизи крупных автомагистралей, железнодорожных путей и станций, морских и речных портов, аэродромов, автопредприятий. Уровень шума в домах вдоль главных магистралей Москвы достигает 60 дБ. Самые шумные места – на Садовом кольце. В часы пик шум от трамваев на улицах превышает 77 дБ.

  • Транспортные средства создают шум, дБ:
  • Легковой автомобиль.................................................... 65–80
  • Автобус........................................................................... 80–85
  • Грузовой автомобиль.................................................... 80–90
  • Мотоцикл....................................................................... 90–95
  • Моторная лодка............................................................. 90–95
  • Поезд метро.................................................................... 90–95
  • Обычный поезд............................................................. 95–100
  • Самолёт на взлёте....................................................... 110–130
  • Крупный реактивный самолёт.................................. 155–160

В настоящее время в ряде стран установлены предельно допустимые уровни шума для предприятий, отдельных машин, транспортных средств. Например, к эксплуатации на международных линиях допускаются самолёты, создающие шум не выше 112 дБ днём и 102 дБ ночью. Начиная с моделей 1985 г. максимально допустимые уровни шума: для легковых автомобилей 80 дБ, для автобусов и грузовых автомобилей в зависимости от массы и вместимости соответственно 81–85 дБ и 81–88 дБ.

Особую опасность представляют плееры и дискотеки для подростков. Скандинавские учёные пришли к выводу, что каждый пятый подросток плохо слышит, хотя и не всегда об этом догадывается. Причина – злоупотребление переносными плеерами и долгое пребывание на дискотеках. Обычно уровень шума на дискотеке составляет 80–100 дБ, что сравнимо с уровнем шума интенсивного уличного движения или взлетающего в 100 м турбореактивного самолёта. Громкость звука плеера составляет 100–114 дБ. Почти так же оглушительно работает отбойный молоток. Правда, для рабочих в таких ситуациях предусмотрена шумовая защита. Если ею пренебречь, то уже через 4 ч непрерывного грохота (в неделю) возможны кратковременные нарушения слуха в области высоких частот, а позднее появляется звон в ушах.

Здоровые барабанные перепонки без ущерба могут переносить громкость плеера в 110 дБ максимум в течение 1,5 мин. Французские учёные отмечают, что нарушения слуха в наш век активно распространяются среди молодых людей; с возрастом они, скорее всего, будут вынуждены пользоваться слуховыми аппаратами. Даже низкий уровень громкости мешает концентрации внимания во время умственной работы. Музыка, пусть даже совсем тихая, снижает внимание – это следует учитывать при выполнении домашней работы. Когда звук нарастает, организм производит много гормонов стресса, например, адреналин. При этом сужаются кровеносные сосуды, замедляется работа кишечника. В дальнейшем всё это может привести к нарушениям работы сердца и кровообращения. Эти перегрузки – причина каждого, по крайней мере, десятого инфаркта.

Первый симптом ухудшения слуха называется эффектом званого ужина . На многолюдном вечере человек перестаёт различать голоса, не может понять, почему все смеются. Он начинает избегать многолюдных встреч, что ведёт к его социальной изоляции. Многие люди с нарушением слуха впадают в депрессию и даже страдают манией преследования.

Существуют методы борьбы с шумом: хороши зелёные насаждения и шумозащитные экраны для защиты малоэтажной застройки; для защиты индивидуальных квартир применяют стеклопакеты (окна с улучшенной звукоизоляцией) либо заменяют стёкла на более толстые (при двойном остеклении первые должны быть толщиной 4 мм, вторые – 6 мм).

3.1.2 Действие шума на организм человека

Шум, даже когда он невелик (при уровне 50-60 дБ), создает значительную нагрузку на нервную систему человека, оказывая на него психологическое воздействие. Это особенно часто наблюдается у людей, занятых умственной деятельностью. Слабый шум различно влияет на людей. Причиной этого могут быть: возраст, состояние здоровья, вид труда, физическое и душевное состояние человека в момент действия шума и другие факторы. Степень вредности какого-либо шума зависит также от того, насколько он отличается от привычного шума. Неприятное воздействие шума зависит и от индивидуального отношения к нему. Так, шум, производимый самим человеком, не беспокоит его, в то время как небольшой посторонний шум может вызвать сильный раздражающий эффект.

Известно, что ряд таких серьезных заболеваний, как гипертоническая и язвенная болезни, неврозы, в ряде случаев желудочно-кишечные и кожные заболевания, связаны с перенапряжением нервной системы в процессе труда и отдыха. Отсутствие необходимой тишины, особенно в ночное время, приводит к преждевременной усталости, а часто и к заболеваниям. В этой связи необходимо отметить, что шум в 30-40 дБ в ночное время может явиться серьезным беспокоящим фактором. С увеличением уровней до 70 дБ и выше шум может оказывать определенное физиологическое воздействие на человека, приводя к видимым изменениям в его организме. Под воздействием шума, превышающего 85-90 дБ, в первую очередь снижается слуховая чувствительность на высоких частотах. Сильный шум вредно отражается на здоровье и работоспособности людей. Человек, работая при шуме, привыкает к нему, но продолжительное действие сильного шума вызывает общее утомление, может привести к ухудшению слуха, а иногда и к глухоте, нарушается процесс пищеварения, происходят изменения объема внутренних органов.
Воздействуя на кору головного мозга, шум оказывает раздражающее действие, ускоряет процесс утомления, ослабляет внимание и замедляет психические реакции. По этим причинам сильный шум в условиях производства может способствовать возникновению травматизма, так как на фоне этого шума не слышно сигналов - транспорта, автопогрузчиков и других машин.

Эти вредные последствия шума выражены тем больше, чем сильнее шум и чем продолжительнее его действие. Таким образом, шум вызывает нежелательную реакцию всего организма человека. Патологические изменения, возникшие под влиянием шума, рассматривают как шумовую болезнь.
Звуковые колебания могут восприниматься не только ухом, но и непосредственно через кости черепа (так называемая костная проводимость). Уровень шума, передаваемого этим путем, на 20-30 дБ меньше уровня, воспринимаемого ухом. Если при невысоких уровнях передача за счет костной проводимости мала, то при высоких уровнях она значительно возрастает и усугубляет вредное действие на человека.
При действии шума очень высоких уровней (более 145 дБ) возможен разрыв барабанной перепонки.

  1. РАСПРОСТРАНЕНИЕ ЗВУКА.

Как уже говорилось, звуковые волны могут распространяться в воздухе, газах, жидкостях и твердых телах. В безвоздушном пространстве волны не возникают. В этом легко убедиться на простом опыте. Если электрический звонок поместить под воздухонепроницаемый колпак, из которого откачен воздух, мы никакого звука не услышим. Но как только колпак наполнится воздухом, возникает звук.

Скорость распространения колебательных движений от частицы к частице зависит от среды. В далекие времена воины прикладывали ухо к земле и таким образом обнаруживали конницу противника значительно раньше, чем она появлялась в поле зрения. А известный ученый Леонардо да Винчи в 15 веке писал: «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь шум кораблей, очень отдаленных от тебя»

Скорость распространения звука в воздухе впервые была измерена в 17 веке Миланской академией наук. На одном из холмов установили пушку, а на другом расположился наблюдательный пункт. Время засекли и в момент выстрела (по вспышке) и в момент приема звука. По расстоянию между наблюдательным пунктом и пушкой и времени происхождения сигнала скорость распространения звука рассчитать уже не составляло труда. Она оказалась равной 330 метров в секунду.

В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились одна от другой на расстоянии 13847 метров. На первой под днищем подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). На первой лодке одновременно с ударом в колокол подожгли порох, на второй наблюдатель в момент вспышки запустил секундомер и стал, ждать прихода звукового сигнала от колокола. Выяснилось, что в воде звук распространяется в 4 с лишним раза быстрее, чем в воздухе, т.е. со скоростью 1450 метров в секунду.

Чем выше упругость среды, тем больше скорость: в каучуке - 50, в воздухе - 330, в воде - 1450, а в стали - 5000 метров в секунду. Если бы мы, находились в Москве, могли крикнуть так громко, чтобы звук долетел до Петербурга, то нас услышали бы там только через полчаса, а если бы звук на это же расстояние распространялся в стали, то он был бы принят через две минуты.

На скорость распространения звука оказывает влияние состояние одной и той же среды. Когда мы говорим, что в воде звук распространяется со скоростью 1450 метров в секунду, это вовсе не означает, что в любой воде и при любых условиях. С повышением температуры и солености воды, а так же с увеличением глубины, а, следовательно, и гидростатического давления скорость звука возрастает. Или возьмем сталь. Здесь тоже скорость звука зависит как от температуры, так и от качественного состава стали: чем больше в ней углерода, тем она тверже, тем звук в ней распространяется быстрее.

Встречая на своем пути препятствие, звуковые волны отражаются от него по строго определенному правилу: угол отражения равен углу падения. Звуковые волны, идущие из воздуха, почти полностью отразятся от поверхности воды вверх, а звуковые волны, идущие от источника, находящегося в воде, отражаются от нее вниз.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального положения, т.е. преломляются . Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды, в какую проникает звук. Если скорость звука во второй среде больше чем в первой, то угол преломления будет больше угла падения и наоборот.

В воздухе звуковые волны распространяются в виде расходящийся сферической волны, которая заполняет все больший объем, так как колебания частиц, вызванные источниками звука, передаются массе воздуха. Однако с увеличением расстояния колебания частиц ослабевают. Известно, что для увеличения дальности передачи, звук необходимо концентрировать в заданном направлении. Когда мы хотим, чтобы нас лучше было слышно, мы прикладываем ладони ко рту или пользуемся рупором. В этом случае звук будет ослабляться меньше, а звуковые волны - распространяются дальше.

При увеличении толщины стенки звуколокация на низких средних частотах увеличивается, но «коварный» резонанс совпадения, вызывающий удушение звуколокации, начинает проявляться, более низких частотах и захватывает более широкую их область. Ослабление звука связано и с тем, что звуковая волна постепенно теряет энергию из-за поглощения ее средой. Степень поглощения опять-таки определяется свойствами среды. В более вязкой среде, например в вате, каучуке, поглощение больше. Однако оно во многом зависит и от частоты звука. Чем больше частота, тем больше поглощение. Звук частоты 10000 Гц поглощается в 100 раз больше, чем звук частоты 1000 Гц. Не случайно орудийный выстрел вблизи кажется нам оглушающе резким, издали - более мягким, глухим. Это объясняется тем, что звук от выстрела пушки содержит в себе как низкие, так высокие частоты, а звуки высоких частот поглощаются в воздухе больше, чем звуки низких частот. Находясь далеко от стреляющей пушки, мы слышим звуки более низких частот, а звуки высоких не доходят до нас - они поглощаются. Еще более наглядный пример, подтверждающий это явление - звучание удаляющегося оркестра. Сначала пропадают высокие звуки флейт и кларнетов, затем средние - корнетов и альтов, и наконец, когда оркестр будет уже совсем далеко, слышен только большой барабан.

На дальность распространения звука большое влияние оказывает рефракция , то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч.

Дальность распространения звука в море, как правило, равна (в зависимости от мощности источника звука) десяткам или сотням километров. Но бывают случаи, когда распространяется по так называемому подводному каналу, который возникает чаще всего в океане. Это область глубин, где скорость звука вначале уменьшается, а достигнув минимума, начинает возрастать. Физически это обусловливается большой зависимостью распространения звука в морской воде от ее температуры, солености и гидростатического давления.

С глубиной скорость звука уменьшается, но лишь до тех пор, пока понижается температура воды. Достигнув определенного уровня, скорость начинает возрастать из-за повышения гидростатического давления. Верхние и нижние границы звукового канала имеют глубину с равными скоростями звука. За ось канала принимается глубина с наименьшей скоростью распространения звука.

Сверхдальнее происхождение звука в канале объясняется тем, что звуковые лучи, почти полностью отражаясь от верхней и нижней границ звукового канала, не выходят за его пределы, а концентрируются и распространяются вдоль оси звукового канала.

«Чтобы лучше понять это, - говорит академик Л.М. Бреховский, - вспомните, как ведет себя уставший путник, он предпочитает держаться теневой, более прохладной стороны, нести на своих плечах как можно меньше груза и двигаться с минимальной скоростью. Ведь только при этом он сможет пройти максимальное расстояние. Звуковой луч в морской воде подобен этому путнику. Выйдя из источника, он уходит вверх от оси звукового канала. Чем выше, тем теплее, и луч заворачивает вниз, «в холодок», и углубляется до тех пор, пока не начинает «ощущать» тяжесть повышающегося гидростатического давления».

Американские ученые проделали в Атлантическом океане эксперимент, подтверждающий слияние среды на дальность распространения звука. На глубине 500 метров каждый. Спустя некоторое время взрыв был зафиксирован на Бермудских островах, удаленных от места эксперимента на 4500 км. Такой взрыв в воздухе слышен всего на расстоянии 4 км, а в лесу - не более 200 м.

Явление сверх дальнего распространения звука в подводном звуковом канале специалисты использовали для создания спасательной системы «Софар». С кораблей и самолетов, терпящих бедствие, сбрасывают небольшие бомбочки весом от 0,5 до 2,5 кг, которые взрываются на глубине залегания оси звукового канала. Береговые посты принимают место взрыва, а, следовательно, и место катастрофы.

  1. Ультразвуки и инфразвуки.

Сейчас акустика, как область физики рассматривает более широкий спектр упругих колебаний - от самых низких до предельно высоких, вплоть до 1012 - 1013 Гц. Не слышимые человеком звуковые волны с частотами ниже 16 Гц называют инфразвуком , звуковые волны с частотами от 20 000 Гц до 109Гц - ультразвуком , а колебания с частотами выше, чем 109Гц называют гиперзвуком .

Этим неслышимым звукам нашли много применения. Ультразвуки и инфразвуки имеют очень важную роль и в живом мире.

Так, например, рыбы и другие морские животные чутко улавливают инфразвуковые волны, создаваемые штормовыми волнениями. Таким образом, они заранее чувствуют приближение шторма или циклона, и уплывают в более безопасное место. Инфразвук - это составляющая звуков леса, моря, атмосферы. При движении рыб, создаются упругие инфразвуковые колебания, распространяющиеся в воде. Эти колебания хорошо чувствуют акулы за много километров и плывут на встречу добыче.

Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полёте они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).

Проведённые наблюдения показали, что муравьи так же издают ультразвуковые сигналы с разными частотами в разных ситуациях. Все записанные эти муравьиные звуковые сигналы можно разделить на три группы: "сигнал бедствия", "сигнал агрессии" (во время борьбы) и "пищевые сигналы". Эти сигналы представляют собой кратковременные импульсы, длительностью от 10 до 100 микросекунд. Муравьи издают звуки в сравнительно широком диапазоне частот - от 0,3 до 5 килогерц.

5.1 Звуколокация.

На явлении эхо основан метод определения расстояний до различных предметов и обнаружения их месторасположений. Допустим, что каким-нибудь источником звука испущен звуковой сигнал и зафиксирован момент его испускания. Звук встретил какое-то препятствие, отразился от него, вернулся и был принят приёмником звука. Если при этом был измерен промежуток времени между моментами испускания и приёма, то легко найти и расстояние до препятствия. За измеренное время t звук прошёл расстояние 2s, где s - это расстояние до препятствия, а 2s - расстояние от источника звука до препятствия и от препятствия до приёмника звука. Если скорость звука v известна, то можно написать:

S=υ·t/2

По этой формуле можно найти расстояние до отражателя сигнала. Но ведь надо ещё знать, где он находится, в каком направлении от источника сигнал встретил его. Между тем звук распространяется по всем направлениям, и отраженный сигнал мог прийти с разных сторон. Чтобы избежать этой трудности используют не обычный звук, а ультразвук.

Ультразвуковые волны по своей природе такие же, как обычные звуковые волны, но не воспринимаются человеком как звук. Это объясняется тем, что частота колебаний в них больше, чем 20 000 Гц. Такие волны наблюдаются в природе. Есть даже такие живые существа, способные их испускать и принимать. Ультразвуковые волны и притом большой мощности можно создавать с помощью электрических и магнитных методов.

Главная особенность ультразвуковых волн состоит в том, что их можно сделать направленными, распространяющимися по определённому направлению от источника. Благодаря этому по отражению ультразвука можно не только найти расстояние, но и узнать, где находится тот предмет, который их отразил. Так можно, например, измерять глубину моря под кораблем.

Звуколокаторы позволяют обнаруживать и определять местоположение различных повреждений в изделиях, например пустоты, трещины, постороннего включения и др. В медицине ультразвук используют для обнаружения различных аномалий в теле больного - опухолей, искажений формы органов или их частей и т.д. Чем короче длина ультразвуковой волны, тем меньше размеры обнаруживаемых деталей. Ультразвук используется также для лечения некоторых болезней.

5.2 Применение ультразвуков и инфразвуков.

Ещё полстолетия назад неслышимый звук был мало кому известен; первые научные изыскания носили чисто академический характер. Однако практика поставила некоторые неотложные задачи, и новые открытия наметили пути к их разрешению. Неслышимый звук получил многочисленные применения.

Ещё сравнительно недавно никто не мог предположить, что звуком станут не только измерять глубину моря, но и сваривать металл, сверлить стекло и дубить кожи.

В.В. Шулейкин в 1932 году обнаружил явление, которое он назвал "голосом моря". Взаимодействие сильного ветра и морских волн создаёт сильные инфразвуковые волны, которые распространяются со скоростью звука, т.е. значительно быстрее циклона. Они бегут по морским волнам, усиливаясь. Этот инфразвук может служить ранним предвестником бури, шторма или циклона.

Ультразвуковым волнам было найдено больше применения во многих областях человеческой деятельности: в промышленности, в медицине, в быту, ультразвук использовали для бурения нефтяных скважин и т.д. От искусственных источников можно получить ультразвук интенсивностью в несколько сотен Вт/см2.

5.2.1 Применение инфразвука

Поющие пески. Есть на земле места (отмели Кольского полуострова, долины рек Вилюя и Лены, побережье Байкала), где обширные площади движущихся песков звучат так, что кажется, будто вокруг «поёт» вся пустыня. Особенно громко пески поют на гребнях барханов и дюн. В других местах звучат лишь небольшие участки, песчаные косы и пляжи, подчас поросшие кустарником. Порой звуки раздаются самые неожиданные: то лай собаки, то звон натянутой струны, то звучание органа, а то и рёв авиационных двигателей. Жители города Никополя многократно слышали звучание песка на косе речки Лапинки (один из рукавов Днепра). Очень хорошо это пение было слышно в 1952 г., особенно после дождя, когда верхний слой песка слипался, а затем подсыхал, образуя рыхлую корку. Когда по нему шли, он издавал звуки, похожие на свист воздуха, выпускаемого из автомобильной камеры.

На правом берегу реки Или, в ста восьмидесяти двух километрах от Алма-Аты, находится знаменитый Поющий бархан. Длина его достигает двух километров, ширина – полукилометра, а высота – ста пятидесяти метров. Сложен он из чистого жёлтого песка, отливающего золотом. Венчает бархан острый гребень. Песок тут звучит, когда начинает осыпаться.

Что же заставляет пески звучать? Некоторые учёные считают, что звук рождается при трении множества песчинок друг о друга. Песчинки покрыты тонким налётом соединений кальция и магния, и звуки возникают так же, как под скрипичным смычком, когда им проводят по струнам, натёртым канифолью. Другие полагают, что основная причина заключена в движении воздуха в промежутках между песчинками. Когда бархан осыпается, промежутки то увеличиваются, то уменьшаются, воздух то проникает в них, то выталкивается оттуда. Есть и такое объяснение: звуки вызываются электризацией песка. Благодаря трению песчинки заряжаются разноимённо и начинают отталкиваться одна от другой. А это порождает звуки, как при обычном электрическом разряде. Советскому учёному Я.В.Рыжко удалось искусственно получить такой звучащий песок. Он взял обычный речной песок, просушил, очистил от пыли, удалил из него все посторонние примеси и затем наэлектризовал при помощи обычной электрофорной машины. И песок зазвучал – при нажиме рукой издавал скрипящие звуки.

Гул песка (очень похожий на рёв реактивного самолёта) можно объяснить следующим. В любом бархане на небольшой глубине вследствие конденсации влаги из воздуха образуется слой уплотнённого влажного песка. Весной и осенью, после дождей, он смыкается с поверхностным, тоже влажным, слоем, – и тогда бархан становится немым. Летом, в жару, песок сверху высыхает, под ним остаётся влажный слой, а ещё ниже – снова сухой. Когда по бархану течёт песчаная лавина, то верхние слои песка, испытывая меньше трения, обгоняют нижние, при этом возникает своеобразная, хорошо заметная волнистость поверхности. Она передаётся толчками на слои влажного песка, и он, как дека музыкального инструмента, резонирующая от колебания струны, начинает вибрировать, издавая характерный гул.

Между прочим, когда такой песок привозят для изучения в лабораторию, он замолкает. Но если его поместить в герметично закрытый сосуд, он снова начинает звучать. Почему? Пока можно только высказывать предположения.

Инфразвук (от лат. infra – ниже , под ) – упругие волны, аналогичные звуковым, но имеющие частоты ниже слышимых человеком частот. Обычно за верхнюю границу инфразвукового (ИЗ) диапазона принимают 16–25 Гц, нижняя граница не определена. Практический интерес могут представлять колебания частотой от десятых и даже сотых долей герца, т.е. периодами в десяток секунд. Инфразвук содержится в шуме атмосферы, леса, моря. Источниками ИЗ-колебаний являются грозовые разряды (гром), взрывы, орудийные выстрелы. В земной коре наблюдаются ИЗ-колебания, возбуждаемые самыми разнообразными источниками, в том числе землетрясениями, взрывами, обвалами и даже транспортными средствами.

Поскольку инфразвук слабо поглощается в различных средах, он может распространяться на очень большие расстояния в воздухе, воде и земной коре. Это находит практическое применение при определении местоположения эпицентра землетрясения, сильного взрыва или стреляющего орудия. Распространение инфразвука на большие расстояния в море даёт возможность предсказывать стихийные бедствия, например, цунами. Взрывы, порождающие большой спектр ИЗ-частот, применяются для исследования верхних слоёв атмосферы, свойств водной среды.

Развитие промышленного производства и транспорта привело к значительному увеличению источников инфразвука в окружающей среде и возрастанию его уровня. Основные техногенные источники инфразвука в городе приведены в таблице.

Влияние инфразвука на организм человека. В конце 60-х гг. французский исследователь Гавро обнаружил, что инфразвуки определённых частот могут вызывать у человека тревожность и беспокойство, головную боль, снижать внимание и работоспособность, даже нарушать функцию вестибулярного аппарата и вызывать кровотечение из носа и ушей. Инфразвук частотой 7 Гц смертелен. Свойство инфразвука вызывать страх используется полицией в ряде стран мира: для разгона толпы включаются мощные генераторы, частоты которых отличаются на 5–9 Гц. Биения, возникающие вследствие различия частот этих генераторов, имеют ИЗ-частоту и вызывают у многих людей неосознанное чувство страха, желание поскорее уйти из этого места.

Профессор Гавро познакомился с инфразвуками почти случайно. В одном из помещений лаборатории, где работали его сотрудники, с некоторых пор стало невозможно находиться. Достаточно было пробыть здесь два часа, чтобы почувствовать себя совсем больным: кружилась голова, наваливалась усталость, мысли путались, а то и вовсе не хотелось думать о чём-либо.

Прошёл не один день, прежде чем исследователи сообразили, где следует искать неизвестного врага. Им оказались инфразвуки большой мощности, создаваемые вентиляционной системой нового завода, построенного близ лаборатории. Частота этих волн равнялась 7 Гц. Профессор Гавро высказал предположение, что биологическое действие инфразвука проявляется, если частота волны совпадает с так называемым альфа - ритмом головного мозга.

Механизм восприятия инфразвука и его физиологического действия на человека пока полностью не установлен. Возможно, что оно связано с возбуждением резонансных колебаний в организме. Так, собственная частота нашего вестибулярного аппарата близка к 6 Гц, и многим знакомы неприятные ощущения при длительной езде в автобусе, поезде, при плавании на корабле или качании на качелях. Говорят: «Меня укачало».

При воздействии инфразвука могут отличаться друг от друга картины, создаваемые левым и правым глазом, начинает «ломаться» горизонт, возникают проблемы с ориентацией в пространстве, приходят необъяснимые тревога и страх. Подобные же ощущения вызывают и пульсации света частотой 4–8 Гц. Ещё египетские жрецы, чтобы добиться признания у пленника, связывали его и с помощью зеркала пускали в глаза пульсирующий солнечный луч. Через некоторое время у пленника появлялись судороги, начинала идти пена изо рта, психика подавлялась, и он начинал отвечать на вопросы.

Сходные воздействия инфразвука и мигающего света, не считая даже повышенную громкость звука, испытывают посетители дискотек. Вполне возможно, что они не проходят бесследно, и в организме могут происходить какие-либо нежелательные и необратимые изменения.

Британские учёные продемонстрировали, что под воздействием инфразвука люди испытывают примерно те же ощущения, что и при «встречах» с призраками. Был поставлен такой эксперимент. С помощью семиметровой трубы учёным удалось подмешать к звучанию обычных музыкальных инструментов на концерте классической музыки сверхнизкие частоты. После концерта слушателей (а их было 750 человек) попросили описать впечатления. «Подопытные» сообщили, что чувствовали внезапный упадок настроения, печаль, у некоторых по коже бежали мурашки, у кого-то возникало тяжёлое чувство страха.

При землетрясениях и подвижках земной коры генерируются волны трёх типов: P, S , и L . P -волны (от англ. primary – первичный ) – продольные волны сжатия-растяжения, распространяются на огромные расстояния со скоростью звука в данной среде. S -волны (от англ. secondary – вторичный ) – поперечные, они могут распространяться только в скальных породах. L -волны (волны Лява, по имени открывшего их учёного A.Love ) подобны морским и распространяются вдоль границ разных сред с малой скоростью, зависящей от частоты. Волна инфразвука, дойдя до поверхности Земли от центра землетрясения, превращается в L -волну, которая и вызывает наблюдаемые многочисленные разрушения. Такие же, но более слабые, волны возникают при подземных ядерных взрывах.

Инфразвук – причина катастроф. Дело в том, что в Мировом океане громадные запасы метангидрата – метанового льда. Это конгломерат воды и газа, состоящий из кластеров из 32 молекул воды и 8 молекул метана. Метангидраты образуются там, где на морском дне через трещины в земной коре выделяется природный газ. Инфразвуковая волна, обладая огромной энергией, разрушает метановый лёд, и газ метан выделяется в воду. Кратеры, выделяющие метан, были обнаружены научно-исследовательским кораблём «Полярная звезда» (ФРГ) в море Лаптевых и у берегов Пакистана в 1987 г. Образующаяся при выделении метана газоводяная смесь имеет очень малую плотность, и корабль, оказавшийся в этой зоне, может внезапно утонуть. Так же и самолёт, пролетающий над таким местом, может неожиданно глубоко «провалиться» в воздушную яму и удариться о поверхность воды. Считается, что многие необъяснённые катастрофы кораблей и самолётов связаны именно с непредсказуемым выделением метана из морских глубин.

Инфразвуковые колебания в атмосфере Земли являются результатом действия многочисленных причин: галактических космических лучей, гравитационных воздействий Луны и Солнца, падений метеоритов, электромагнитных излучений и корпускулярных потоков от Солнца, а также геосферных процессов. Взаимодействие электромагнитного излучения с оптическими неоднородностями атмосферы может приводить к генерации акустических колебаний в широком диапазоне частот. Следует ожидать поэтому, что в спектре ИЗ-колебаний атмосферы должна проявляться ритмика солнечной активности. Это может обуславливать широко известную связь солнечной активности с биосферными процессами.

ИЗ-колебания в атмосфере связаны также с сейсмической активностью, причём они могут быть и внешним воздействием на подготовительные процессы, и их результатом. Связь интенсивности сейсмических процессов с солнечной активностью была обнаружена при анализе глобальной сейсмичности и
11-летних солнечных циклов. Сейчас считается, что эта связь осуществляется через циклоническую активность в атмосфере.

В ЛЦ ИКИ в результате анализа спектров инфразвука, полученных в период 1997–2000 гг., обнаружены годовые, сезонные, 27-суточные и суточные периоды колебаний. Подтверждена гипотеза о возрастании энергии инфразвука при уменьшении солнечной активности. Максимальная годовая энергия инфразвука наблюдалась в 1997 г., когда солнечная активность была в минимуме, аналогичное наблюдалось и при её кратковременных (5–10 суток) изменениях. Исследования ИЗ-спектров до и после крупных землетрясений показало их характерные изменения перед крупными землетрясениями. В результате экспериментов по наблюдению электромагнитных откликов на акустические возмущения в атмосфере, создаваемые с помощью мобильного акустического излучателя, доказана связь инфразвука с геомагнитными вариациями.

Таким образом, Солнце, межпланетная среда, атмосфера и литосфера представляют собой единую систему, и существенную роль в процессах их взаимодействия играют ИЗ-волны.

5.2.2 Применение ультразвука

Ультразвук – упругие волны высокой (более 20 кГц) частоты. Хотя о существовании ультразвука учёным было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных физических и технологических методах.

Генерация ультразвуковых (УЗ) волн. Ультразвук можно получить от механических, электромагнитных и тепловых источников. В газовой среде УЗ-волны обычно возбуждаются механическими излучателями разного рода – сиренами прерывистого действия. Мощность ультразвука – до нескольких киловатт на частотах до 40 кГц. УЗ-волны в жидкостях и твёрдых телах обычно возбуждают электроакустическими, магнитострикционными и пьезоэлектрическими преобразователями.

Сирена – один из видов механических УЗ-излучателей. Она обладает относительно большой мощностью и применяется в милицейских и пожарных машинах. Все ротационные сирены имеют камеру, закрытую сверху диском (статором) с большим количеством отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске – роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается в те короткие мгновения, когда отверстия на роторе и статоре совпадают. Основная задача при изготовлении сирен – это, во-первых, увеличить число отверстий в роторе и, во-вторых, увеличить скорость его вращения. Однако совместить эти требования очень трудно.

Свисток Гальтона . Первый ультразвуковой свисток сделал в 1883 г. англичанин Ф.Гальтон. При пропускании под высоким давлением воздуха через маленькую цилиндрическую резонансную полость в результате удара цилиндрического поршня о губу (металлическую пластинку) в зазоре генерируется ультразвук частотой около 170 кГц (определяется размерами кольцевого сопла и губы). Мощность свистка Гальтона невелика, его в основном применяют для подачи команд при дрессировке собак.

  • Применение ультразвука в медицине

Гигиена. То, что ультразвук активно воздействует на биологические объекты (например, убивает бактерии), известно уже более 70 лет, но до сих пор среди медиков нет единого мнения о конкретном механизме его воздействия на больные органы. Одна из гипотез: высокочастотные УЗ-колебания вызывают внутренний разогрев тканей, сопровождаемый микромассажем.

Санитария . Широко применяются в больницах и клиниках УЗ-стерилизаторы хирургических инструментов.

Диагностика . Электронная аппаратура со сканированием УЗ-лучом служит для обнаружения опухолей мозга и постановки диагноза.

Акушерство – область медицины, где эхоимпульсные УЗ-методы наиболее прочно укоренились, как, например, ультразвуковое исследование (УЗИ) движения плода, которое недавно прочно вошло в практику. Сейчас происходит накопление информации по движению конечностей плода, псевдодыханию, по динамике сердца и сосудов. Пока исследуются физиология и развитие плода, а до обнаружения аномалий пока ещё далеко.

Офтальмология . Ультразвук особенно удобен для точного определения размеров глаза, а также для исследования патологий и аномалий его структур в случае непрозрачности и, следовательно, недоступности для обычного оптического исследования. Область позади глаза – орбита – доступна обследованию через глаз, поэтому ультразвук вместе с компьютерной томографией стал одним из основных методов исследования патологий этой области.

Кардиология . Ультразвуковые методы широко применяются при обследовании сердца и прилегающих магистральных сосудов. Это связано с возможностью быстрого получения пространственной информации, а также возможностью её объединения с томографической визуализацией.

Терапия и хирургия . Давно известно, что УЗ-излучение можно сделать узконаправленным. Французский физик Поль Ланжевен впервые заметил его повреждающее действие на живые организмы. Результаты его наблюдений, а также сведения о том, что УЗ-волны могут проникать сквозь мягкие ткани человеческого организма, привели к тому, что с начала 1930-х гг. возник большой интерес к проблеме применения ультразвука для терапии различных заболеваний. Особенно широко ультразвук стал применяться в физиотерапии. Тем не менее, лишь недавно стал намечаться научный подход к анализу явлений, возникающих при взаимодействии УЗ-излучения с биологической средой. Терапевтический ультразвук можно разделить на ультразвук низких и высоких интенсивностей – соответственно неповреждающий нагрев (или какие-либо нетепловые эффекты) и стимуляция и ускорение нормальных физиологических реакций при лечении повреждений (физиотерапия и некоторые виды терапии рака). При более высоких интенсивностях основная цель – вызвать управляемое избирательное разрушение в тканях (хирургия). Электронная аппаратура используется в нейрохирургии для инактивации отдельных участков головного мозга мощным сфокусированным высокочастотным (порядка 1000 кГц) пучком.

Оценка безопасности применения ультразвука в медицине . Пока невозможно выделить один или даже несколько физических параметров, которые служили бы в качестве адекватных количественных характеристик, позволяющих предсказать конечный биологический эффект. И всё же полезно выдвинуть некоторые критерии для правильного применения ультразвука:

1. Оператор должен использовать минимальные интенсивности и экспозиции, позволяющие получить у пациента желаемый клинический эффект.

2. Обслуживающий персонал не должен облучаться без необходимости.

3. Все процедуры должны выполняться хорошо обученным персоналом или под его руководством.

Гидролокация. Давление в УЗ-волне превосходит давление в волне обычного звука в тысячи раз и легко обнаруживается с помощью микрофонов в воздухе и гидрофонов в воде. Это даёт возможность применения ультразвука для обнаружения косяков рыбы или других подводных объектов. Одна из первых практических УЗ-систем обнаружения подводных лодок появилась в конце Первой мировой войны.

Ультразвуковой расходомер. Принцип действия такого прибора основан на эффекте Доплера. Импульсы ультразвука направляются попеременно по потоку и против него. При этом скорость прохождения сигнала то складывается со скоростью потока, то вычитается из неё. Возникающая разность фаз импульсов в двух ветвях измерительной схемы регистрируется электронным оборудованием, в итоге вычисляется скорость потока, а по ней – и массовая скорость (расход). Этот измеритель может применяться как в замкнутом контуре (например, для исследований кровотока в аорте или охлаждающей жидкости в атомном реакторе), так и в открытом (например, реки).

Химическая технология. Вышеописанные методы относятся к категории маломощных, в которых физические характеристики среды не изменяются. Но существуют и методы, в которых на среду направляют ультразвук большой интенсивности. При этом в жидкости развивается мощный кавитационный процесс (образование множества пузырьков, или каверн, которые при повышении давления схлопываются), вызывая существенные изменения физических и химических свойств этой среды. Многочисленные методы УЗ-воздействия на химически активные вещества объединяются в научно-техническую отрасль знаний, называемую УЗ-химией. Она исследует и стимулирует такие процессы, как гидролиз, окисление, перестройка молекул, полимеризация, деполимеризация, ускорение реакций.

УЗ-пайка. Кавитация, обусловленная мощными УЗ-волнами в металлических расплавах, и разрушает оксидную плёнку алюминия, и позволяет производить его пайку оловянным припоем без флюса. Изделия из спаянных ультразвуком металлов стали обычными промышленными товарами.

УЗ-механическая обработка. Энергия ультразвука успешно используется при машинной обработке деталей из очень твёрдых и хрупких материалов, как, например, стекло, керамика, карбид вольфрама, закалённая сталь. В промышленности также используется большой ассортимент оборудования для очистки поверхностей кварцевых кристаллов и оптического стекла, малых прецизионных шарикоподшипников, снятия заусенцев с малогабаритных деталей.

Широко применяется ультразвук для приготовления однородных смесей. Ещё в 1927 г. американские учёные Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и облучить ультразвуком, то в мензурке образуется эмульсия, т.е. мелкая взвесь масла в воде. Это широко используется в промышленности для изготовления лаков, красок, фармацевтических изделий, косметики.

  1. Звукотерапия – лечение звуком.

Наш мир прекрасен. Но он бы не был таковым без многочисленных звуков, которые нас постоянно преследуют. Эти звуки иногда очень сильно отличаются друг от друга. Все звуки можно разделить на те, которые непомерно раздражают и наоборот те, которые нравятся и к тому же даже полезны.

Категоричного разделения звуков на неприятные и приятные оказывается, не существует. Да и подумайте сами – все люди разные со своими предпочтениями. Допустим один просто в восторге от прослушивания классической музыки, при прослушивании которой он становится более спокойным, иному же человеку данная музыка может не нравиться или даже раздражать, зато тяжелы композиции, к примеру, рок-металл, наоборот приводят в норму и позволяют жить и действовать в привычном темпе.

Иногда реакция на одни и те же звуки у одного и того же человека может быть разная. В большой степени реакция на звуки зависит от конкретной ситуации, от интенсивности того или иного звука, а еще и от настроения слушателя. Приведем такой пример, строится ваш будущий дом, в который просто не терпится выехать. Строительные работы обязательно сопровождаются шумом, но он вас не беспокоит, так как строится именно ваш дом. Если бы работы по строительству затеял, кто-либо иной, и вы бы слышали эти шумы, соре все это бы раздражало.

  • Действие звука на организм человека

Люди стали замечать действие тех или иных звуков на человека и его организм, в общем. Постепенно эти знания собирались и систематизировались. Их еще и сейчас не так уж много, но достаточно для того, чтобы звукотерапия стала считаться отдельным направлением в медицине, хотя еще и малоисследованным.

Во время проигрывания музыки образуются невидимые для глаза человека частотные колебания. Возникающие вибрации своеобразно влияют на внутренние органы человека и могут заставлять работать практически все механизмы высшей нервной деятельности. Реакции, вызванные звуком, положительно влияют на здоровье человека, в результате он выздоравливает намного быстрее.

Сейчас уже специалисты уверенны в том, что конкретная нота положительно влияет на определенный орган или помогает в лечении конкретной болезни. Вот, к примеру, верхняя частота ноты фа способствует скорому выведению токсических веществ.

В тибетской медицине принято сочетать звукотерапию с массажем. Сторонники данного метода лечения в последнее время начали использовать тибетские «поющие» чаши. Эти чаши изготавливаются из сплавов металлов. В результате данные чаши, используемые в Тибете для медитаций, позволяют извлечь удивительные звуки, которые невозможно услышать от каких-либо иных музыкальных инструментов. При использовании данных «поющих» чаш, их устанавливают на больного, а затем посредством сосновых или палисандровых палочек пытаются извлечь из них звуки. Данные манипуляции приводят к появлению вибраций. Эти же вибрации, в свою очередь, через органы слуха действуют на внутренние органы пациента.

Положительное влияние звуковых волн на организм людей уже доказано научно. Почему часто можно услышать музыку в кабинете у стоматолога или иного врача? Все просто, музыка – это своеобразное лекарство, а точнее успокоительное. Принимать такое лекарство можно без рецепта и где угодно. Следует сказать, что точно не установлено какую музыку следует слушать каждый должен выбрать то, что нравится именно ему. При прослушивании следует только следить за темпом композиций, их ритмом и силой звучание – ничего из этого не должно вносить негатив, музыка должна расслаблять и доставлять удовольствие.

От темпа звучания музыки будет зависеть ваше состояние. Если композиции более спокойные – человек расслабляется, в большинстве случаев засыпает. Если же музыка наоборот быстрая – появляется желание потанцевать, чувствуется прилив новых сил.

  • Пение для здоровья: петь полезно

Вы любите петь? Пойте на здоровье. И правда на здоровье, ведь голос так же является звуком. Петь для себя можно в то время когда окружающие звуки очень сильно раздражают, а избавиться от них нельзя. А вот свой собственный голос скорее своего сможет несколько успокоить, особенно если с губ будут срываться звук любимых песенок или просто музыкальных мотивов. Кстати во время пения приходится немного поднапрячь свои легкие – набирать в них как можно большее количество воздуха, вследствие этого развеивается сонливость, исчезает усталость, становится легче сконцентрироваться на какой-либо задаче.

Звукотерапия - часть медицины, которая еще и сама делится на несколько составляющих. Звуки природы являются одной из этих составляющих. Если есть возможность, следует больше времени проводить на свежем воздухе рядышком с природой. Однако такая возможность есть не у каждого. В этом случае следует просто приобрести себе диск со звуками природы. Вот пришли домой, включили «природный» диск, закрыли глаза и… на самом деле оказались где-то на берегу моря, или на лесной полянке, или же на берегу прекрасной речушки… В общем, у кого какая фантазии. Пройдет всего несколько минут и станет сразу легче, почувствуется расслабленность, снова захочется жить и творить.

Неплохо бы еще под приятные звуки и подвигаться, обогатив, таким образом, свой организм кислородом. Можно сделать зарядку, можно пробежаться, а можно просто потанцевать под энергичную музыку – главное помнить о том, что и музыка, и движения должны приносить удовольствия, иначе все старания окажутся напрасными.

  1. Цифровые наркотики и их влияние на организм человека


Каждый человек является рабом своего настроения. Думая об этом и вспоминая свой жизненный опыт, частенько приходится делать интересные выводы. Один из них – психическое и эмоциональное состояние человека, наряду с его физическим состоянием, выполняет весьма важную роль в разрешении важных проблем и вопросов. Например, сегодня я ощущаю себя довольно бодрым и полным сил, поэтому ничто не мешает мне замечательно провести этот день – поделится позитивом с одноклассниками, друзьями, а так же с большим удовольствием сделать множество сложных и важных дел.

Рассмотрим второй вариант. Бывает, что возникает ощущение, что мир буквально наполнен обстоятельствами и людьми, которые довольно страстно желают надолго испортить настроение. Маленькие и большие проблемы, усталость от всего, постоянные жизненные разочарования попросту уничтожают яркие краски, превращая оптимизм и бодрость в нечто серое и не очень привлекательное. Наступают такие времена, когда все валится из рук, попросту ничего не хочется делать, да и ничего не получается. Но, тем не менее, жизнь диктует свои правила и неважно, кто и как себя чувствует. В любом случае ученик будет вынужден пойти на экзамен, а сотруднику все-таки предстоит отчитываться перед шефом.

На протяжении многих веков люди ищут ответы на непростые вопросы: как стимулировать свой организм для определенных действий, как им управлять. А так же, как при помощи этих средств решать давно наболевшие проблемы – убегать от них или попросту расслабляться. На сегодняшний день специалисты могут предложить разные методики и способы стимуляции не только тела, но так же и сознания. Наряду с ними люди научились воздействовать на свой организм при помощи различных веществ. Мы пьем по утрам кофе для того, чтобы придать себе сил, «питаем» свой организм энергетиками и шоколадом. Увы, но кто-то любит бороться со всеми жизненными проблемами при помощи наркотиков или алкоголя. В ста процентах случаев это ни к чему не приводит.

В последнее время в Интернете проводится обсуждение специфических услуг, которые предоставляются на коммерческой основе зарубежными компаниями каждому желающему. Одним из таких сервисов является I-Doser , который занимается продажей аудиотреков, прослушав которые вы можете достигнуть эффекта воздействия наиболее известных наркотических веществ. И, как оказалось, выбор весьма широк: ЛСД , героин , марихуана . От пользователя потребуется компьютер, стереонаушники, «дозы» и программа, для их воспроизведения. "Ловить кайф" при помощи компьютера и аудиофайлов!? Кажется, что на первый взгляд глупее и не придумаешь. Но тут не все так просто. Эти технологии на самом деле работают! Неясными остаются лишь их эффективность, целесообразность и безопасность для человека. По этому поводу мнения противоречивы.

Цифровые наркотики влияют на человека посредством так называемых бинауральных ритмов – довольно сложного акустического явления, над изучением которого трудятся ученые во всем мире уже на протяжении многих десятилетий. Называть бинауральные биения цифровыми наркотиками нельзя. Все продукты типа I-Doser являются одной из сфер применения данного эффекта, но не более.

  • Бинауральные ритмы

Первым кто сформулировал и обосновал феномен бинауральных биений, был немецкий ученый-экспериментатор Хайнрих Вильхельм Дофе. Это произошло еще в 1839 году. Сам термин "бинауральный" происходит от 2-х латинских слов: "auris" и "bini", которые означают "ухо" и "пара".

Чтобы понять саму суть бинаурального эффекта нужно стоит внимательно послушать игру оркестра или пение хора. Когда звук игры музыкальных инструментов или голоса людей сливаются в унисон, то отчетливо слышны замедления тона, которые пульсирует с определенной частотой (скоростью).

По известному правилу, частота биения накладываемых друг на друга потоков звука имеющих близкие частоты равна их разности. Это означает, что если на одно ухо подается звук, имеющий частоту 500 Гц, а на другое - 515 ГЦ, то мозг «услышит» бинауральный ритм с частотой 15 Гц. Так же важно отметить, что для достижения бинаурального эффекта необходимо, чтобы разница частот не превышала 25-30 Гц. В ином случае эффект не будет заметен – будут слышны только два раздельных звука. Это происходит потому, что мозг не успевает определить взаимосвязь этих звуков, так как разница во взаимоотношении фаз проявляется довольно быстро.

Но не только разность частот имеет значение. Так же имеют значение сами несущие частоты. Человек научился «слышать» бинауральные ритмы в процессе своего развития и эволюции. Не только мы можем ощущать бинауральные ритмы, но так же и некоторые представители животного мира. Все зависит от структуры мозга и черепа живого существа. Довольно важную роль в этом играет размер черепной коробки, согласно которому определяется диапазон частот, на которых организм может услышать бинауральные биения. Верхней границей для человека принято считать 1000 Гц. Но так считают далеко не все – некоторые специалисты утверждают, что бинауральные ритмы можно слышать и в диапазоне от 1000 до 1500 Гц.

Кстати, кроме создания "цифровых" наркотиков, бинауральные ритмы применяются по следующих направлениях:

  • улучшение памяти, повышение эффективности обучения;
  • управление состоянием организма;
  • для медитаций;
  • для расслабления и «быстрого отдыха»;
  • чтобы лечить некоторые болезни и определять поврежденные области в мозге.

Так же известны случаи использования бинауральных биений в процессе обучения. Например, под руководством известного психолога Девона Эдрингтона среди студентов учебных заведений Вашингтона провели интересный эксперимент. Во время проведения уроков им давали слушать аудиодорожки, содержащие бинауральные ритмы. Полученные результаты оправдали все ожидания – студенты смогли сдать экзамены лучше, чем их сокурсники, которые не участвовали в эксперименте.

Из школьной биологии нам известно, что за счет электрохимических процессов в человеческом мозге возникают волны. Проводить наблюдения за электромагнитной активностью можно при помощи электроэнцефалограммы. Частота, которая доминирует в мозге в определенный момент, помогает определить состояние организма.

Медики и ученые делят такие колебания на типы, описанные ниже.

  • Альфа-ритмы , которые можно наблюдать тогда, когда человек фантазирует или мечтает. Зачастую состояние, когда в мозге доминируют альфа-волны, называют состоянием расслабленности, умиротворенности. У таких ритмов имеется диапазон колебаний от 8 Гц до 13,9 Гц. При недостатке в человеческом мозге альфа-волн, он может переживать депрессии, стресс, различные беспокойства. В альфа-состоянии грезы и мечты в сознании человека могут исчезать и появляться абсолютно произвольно. В этом диапазоне частот бинауральные ритмы способствуют переходу организма в состояние довольно спокойного бодрствования, помогают в изучении данных, фактов и нового материала.
  • Бета-волны еще называют ритмами бодрствования. В человеческом мозге они преобладают, когда человек концентрирует свое внимание на решении различных задач. Как бы там ни было, а избыток бета-ритмов может стать причиной некоторого дискомфорта и беспокойства. Данные волны имеют частоту от 14 Гц до 35 Гц. Когда преобладают бета-волны, человек переживает состояние возбужденности, познания. Бинауральные ритмы этого диапазона помогают достичь состояния сосредоточенности, а так же способствуют развитию памяти.
  • Когда в мозге доминируют тета-волны (от 4 до 7,9 колебаний в секунду), человек переживает что-то среднее между сном и бодрствованием. Несмотря на то, что создаваемый тета-ритмами поток воспоминаний и переживаний не проникает в человеческое сознание, он способен осуществлять влияние на формирование новых отношений и взглядов. До сих пор тета-состояние мало изучено, так как его трудно «поймать». Довольно ярким проявлением тета-ритмов является чувство духовного и творческого пробуждения. Как бы там ни было, но для эффективного творческого подъема тета-волны необходимо комбинироваться с другими типами ритмов.
  • Преобладание дельта-ритмов (до 3,9 Гц) может наблюдаться во время сна. Также они активизируются тогда, когда не задействуются иные типы волн. Большинство экспертов считает, что дельта-волны производят формирование человеческого подсознания. Так же известно, что дельта-волны дают возможность человеку обмениваться информацией на подсознательном уровне: скорее всего многие из нас могли чувствовать то, что ощущали наши друзья и близкие нам люди. Бывает, что дельта-волны наблюдаются в состоянии бодрствования. Эти способности замечательно подходят для представителей некоторых профессий – психотерапевтов и психологов. Но известны и случаи, когда этот «дар» людям приносил больше трудностей, чем пользы. Бинауральные ритмы в диапазонах дельта- и тета-волн могут вызывать творческий подъем, служить в качестве снотворного и помогают расслабляться.

Некоторые из экспертов считают, что лишь по одному типу электромагнитных колебаний определять состояние сознания человека в определенный момент времени не совсем корректно. Причина этого заключается в довольно сложной структуре мозга, подразумевающей одновременное существование большого количества различных смешанных типов волн.

В зависимости от того, каков род деятельности, мозговые процессы могут протекать как в обоих полушариях, так и раздельно. Нужно отметить, что в некоторых ситуациях эффективность работы мозга может быть увеличена, если "заставить" работать на одной частоте оба полушария. Такой способностью может не каждый нормальный человек может похвастаться. Производя изучение специфики возникновения в мозге электромагнитных волн и их влиянии на организм, ученые пришли к выводу, что при помощи бинауральных ритмов можно произвести «настройку» мозга на нужный частотный диапазон и почти вручную формировать его биоэлектрическую активность.

Довольно важную роль в изучении и популяризации бинауральных ритмов сыграл американский писатель-исследователь Роберт Аллан Монро. Он основал Институт Монро, который на протяжении многих десятков лет производит изучение и разработку методик по синхронизации частот полушарий головного мозга при помощи звуковых волн. На сегодняшний день продукты Института по праву считаются эталоном в этой отрасли.

Есть и официальные подтверждения того, что бинауральные ритмы оказывают благотворное влияние на человеческое сознание и на его психологическое состояние. Но так бывает не всегда. Причина этого заключается в неприспособленности человека к бинауральным биениям. Специалисты против того, чтобы с такими колебаниями экспериментировали подростки, дети и больные люди. Эта вполне безобидная забава может привести к довольно печальным последствиям.

На сегодняшний день на бинауральном эффекте стараются заработать почти каждый. Кто-то обещает сделать с помощью бинаурального эффекта сны интересными, кто-то продает услуги по улучшению состояния организма и по повышению эффективности работы. Одним из наиболее противоречивых и оригинальных на этом специфическом рынке сервисов является I-Doser.

Перечень предлагаемых «состояний» (их более ста семидесяти), и из этого перечня большинство молодежи останавливаются на эффектах марихуаны и алкоголя. Из 170 файлов, только часть имитирует "наркотические эффекты", но, по мнению специалистов, среди молодежи и большинства других пользователей, именно на них обращается главное внимание. Опишем все эффекты, как есть.

Сразу после того, как запущен трек, можно наблюдать следующую звуковую картину: шум (напоминает тот, который издается телевизором, если от него отсоединена антенна) и низкочастотные колебания. В общем, длительность фрагмента составляет тридцать пять минут. При прохождении двадцати процентов сеанса у пациента довольно заметно расширяются значки, в голове начинается появляться весьма ощутимая тяжесть. Иногда звуковая картина немного менялась, но не было кардинальных изменений. Начиная с семидесяти семи процентов "телевизорный" шум начал немного угасать, пока полностью не пропал. Теперь пациент слышал в наушниках исключительно биения. Довольно странно чувство – складывается ощущение, что мозг пронизывает волна от уха к уху. На девяноста процентах сеанса к нему прибавилось не очень приятное высокочастотное колебание. Под конец полностью исчезли доминирующие биения, и началась попеременная игра "телевизионными" шумами – они как бы перебрасывались между полушариями. После все закончилось.

А что думают сами разработчики про свое детище? Они предпочитают себя называть создателями сервиса, которые предоставляет возможность за денежку купить, абсолютно легальную альтернативу наркотическим веществам. Кстати, большинство людей считает, что I-Doser, весьма, полезен для общества, так как настоящие наркоманы могут себя избавить от поиска средств на наркотики и удовлетворить потребность своего организма "электронным" путем.

Возникает один вопрос: а что, если I-Doser скачает какой-нибудь школьник и попробует этот электронный героин, а потом он захочет попробовать настоящие, «нецифровые» наркотики. Нет гарантий, что I-Doser не вызывает привыкания к «дозам». Поэтому и нужно дать молодежи понять, что играть с бинауральными ритмами – небезопасно. Увы, но неизведанное и новое расходится по всемирной Сети со скоростью света.

А нужны ли они нам, эти «цифровые наркотики»? Некоторые ответят – да, а некоторые никогда о них не узнают. Несмотря на все преимущества и противоречивые возможности бинаурального эффекта, многие считаю, что на сегодняшний день человек не испытывает прямой нужды в них. Интересно получается – наши предки раньше жили и радовались жизни, творили и были счастливыми без всякой стимуляции мозга бинауральными ритмами. Даже более того, мозг это же не какая-нибудь деталь, которую можно сменить по гарантии – ему нужно работать многие годы. Поэтому лучше всего к нему бережно относится.

ЗАКЛЮЧЕНИЕ

Подведем итоги всего выше сказанного.

Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц, то есть, которые способно воспринимать человеческое ухо. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми. Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном. Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту. Наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется амплитудой колебаний. Высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим. Волны не распространяются мгновенно. Скорость распространения волн зависит от среды, где распространяются волны а так же от температуры. Так, например в воздухе при температуре 20`С эта скорость составляет 343 м/с, а в стальном рельсе при температуре 15`С эта скорость составляет 5000 м/с. Если бы в современной физике не было таких понятий как, механические колебания и волны, то мы не знали бы, почему мы слышим друг друга, Томас Эдисон не изобрел бы телефон и фонограф, и их бы не было в нашей повседневной жизни.

Литература

  1. Агранат Б . А . и др. Основы физики и техники ультразвука. – М., 1987.
  2. Баулан И . За барьером слышимости. – М., 1971.
  3. Вилли К. Биология - М.: Мир, 1968.
  4. Дубровский И. М., Егоров Б. В., Рябошапка К.П. Справочник по физике. - Киев: Наукова думка, 1986.
  5. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1994.
  6. Клюкин И.И Удивительный мир звука. Ленинград «Судостроение» 1986г.
  7. Кошкин Н. И., Ширкевич М.Г. Справочник по элементарной физике 10-е изд., М.: Наука, 1988
  8. Льоццы М. История физики. - М.: Мир, 1970.
  9. Мясников Л.Л. Неслышимый звук.
  10. Пирс Дж. Почти всё о волнах.- М.: Мир, 1976.
  11. Разговор муравьёв. "Наука и жизнь", 1978, No.1, стр. 141
  12. Хорбенко И.Г. Звук, ультразвук, инфразвук. – Издательство «Знание», М., 1986.
  13. Хотунцев Ю . Л . Экология и экологическая безопасность. – М., 2002.
  14. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: Т.III. Колебания и волны. Оптика. Атомная и ядерная физика. 11-е изд.-М.: Наука. Физматлит, 1995.
  15. Энциклопедический словарь юного техника/ Cост. Б. В. Зубков С. В. Чумаков. - 2-е изд., М.: Педагогика, 1987.
Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ЗВУК, УЛЬТРАЗВУК, ИНФРАЗВУК И ИХ ИСПОЛЬЗОВАНИЕ МОУ СОШ № 22 Выполнил: ученик 9 класса Юров Павел г. Узловая 2010 г.

ЗВУК Человек живет в мире звуков. Звук – это то, что слышит ухо. Мы слышим голоса людей, пение птиц, звуки музыкальных инструментов, шум леса, гром во время грозы. Звучат работающие машины, движущийся транспорт и т.д. Что такое звук? Как он возникает? Чем одни звуки отличаются от других? Ответы на эти вопросы хотели узнать люди. Раздел физики, в котором изучаются звуковые явления, называется акустикой. Услышав какой-то звук, мы обычно можем установить, что он дошел до нас от какого-то источника. Рассматривая этот источник, мы всегда найдем в нем что-то колеблющееся. Если, например, звук исходит от репродуктора, то в нем колеблется мембрана – легкий диск, закрепленный по его окружности. Если звук издает музыкальный инструмент, то источник звука – это колеблющийся столб воздуха и другие.

Звуковые волны Упругие волны, вызывающие у человека ощущение звука, называются звуковыми волнами. 16 – 2 10 4 Гц – слышимые звуки; меньше 16 Гц – инфразвуки; больше 2 10 4 Гц – ультразвуки. Обязательное условие для возникновения звуковой волны – наличие упругой среды. Механизм возникновения звуковой волны аналогичен возникновению механической волны в упругой среде. Совершая колебания в упругой среде, вибратор воздействует на частицы среды. Звук создают долговременные периодические источники звука.

Скорость звука Зависит от среды и ее состояния, как и для любой механической волны: ύ = λ ν = λ /Т. При t = 0 ºC ύ воды = 1430 м/с, ύ стали = 5000 м/с, ύ воздуха = 331 м/с. Физические характеристики звука 1. Звуковое давление – давление, оказываемое звуковой волной на стоящее перед ней препятствие. 2. Спектр звука – разложение сложной звуковой волны на составляющие ее частоты. 3. Интенсивность звуковой волны: I = W / St , где S – площадь поверхности; W – энергия звуковой волны; t – время; I = 1 Дж/м ² · с = 1 Вт/1 м ²

Громкость, как и высота, звука связана с ощущением, возникающим в сознании человека, а также с интенсивностью волны.

Высота звука зависит от частоты колебаний: чем > ν , тем выше звук. Тембр звука позволяет различать два звука одинаковой высоты и громкости, издаваемых различными инструментами. Он зависит от спектрального состава.

ЧТО ТАКОЕ ЗВУК? Что же такое звук? Звук - это распространяющиеся в упругих средах: газах, жидкостях и твердых телах- механические колебания, воспринимаемые органами слуха. Рассмотрим примеры, поясняющие физическую сущность звука. Струна музыкального инструмента передает свои колебания окружающим частицам воздуха. Эти колебания будут распространяться все дальше и дальше, а достигнув уха, вызовут колебания барабанной перепонки. Мы услышим звук. Таким образом, то, что мы называем звуком, представляет собой быструю смену, частицы воздуха не перемещаются, они только колеблются, попеременно смещаясь в одну и другую сторону на очень небольшие расстояния. Но изолированных колебании одного тела не существует. В каждой среде в результате взаимодействия между частицами колебания передаются все новым и новым частицам, т.е. в среде распространяются звуковые волны.

Диаграмма, изображающая звуковые волны

Другим простым примером колебательного движения могут служить колебания маятника. Если маятник отклонить от его положения равновесия, а затем отпустить то он будет совершать свободные колебания. Под действием силы тяжести маятник возвращается в свое первоначальное положение, по инерции проходит исходную точку и поднимается вверх, при этом сила тяжести будет тормозить его движение. В точке максимального отклонения маятник становится и через мгновение начнет движение в обратном направлении. Циклы колебаний маятника непрерывно повторяются. Колебания могут быть периодическими, когда изменения повторяются через равный промежуток времени и не периодическими когда нет полного повторения процесса изменения. Среди периодических колебаний очень важную роль играют гармонические колебания. В зависимости от процесса различают колебания механические, электрического тока и напряжения звуковых колебаний.

Наиболее наглядны волны на поверхности воды. Если бросить камень в воду, вначале появится углубление, затем - возвышение воды, а потом возникают волны, представляющие собой последовательно чередующиеся гребни и впадины. Увеличиваясь по фронту, они распространяются по всем направлениям, но отдельные частицы не передвигаются вместе с волнами, а колеблются только в небольших пределах около некоторого неизменного положения. В этом можно убедиться, например, наблюдая за щепкой, подпрыгивающую на волнах. Она будет подниматься и опускаться, т.е. колебаться, пропуская под собой бегущую волну. Волны бывают продольные и поперечные; в первом случае колебания частиц среды совершаются вдоль направления распространения волны, во втором - поперек него. Человеческое ухо способно воспринимать колебания с частотой примерно от 200 до 20000 колебаний в секунду. Соответственно этому механические колебания с указанными частотами называются звуковыми, или акустическими. Вопросы, которыми занимается акустика, очень разнообразны. Некоторые из них связаны со свойствами и особенностями органов слуха.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

Общая акустика изучает вопросы возникновения, распространения и поглощение звука. Физическая акустика занимается изучением самих звуковых колебаний, а за последние десятилетия охватила и колебания, лежащие за пределами слышимости (ультраакустика). При этом она широко пользуется разнообразными методами превращения механические колебания, электрические и обратно. Применительно к звуковым колебаниям, число задач физической акустики входит и изучение физических явлений, обусловливающих те или иные качества звука, различимые на слух. Электроакустика, или техническая акустика, занимается получением, передачи, приемом и записью звуков при помощи электрических приборов. Архитектурная акустика изучает распространение звука в помещениях, влияние на звук размеров и формы помещений, свойств материалов, покрывающих стены и потолки и. т. д. При этом имеется в виду слуховое восприятие звука.

Наложение звуковых волн.

Музыкальная акустика исследует природу музыкальных звуков, а также музыкальные настрой и системы. Мы различаем, например, музыкальные звуки (пение, свист, звон, звучание струн) и шумы (треск, стук, скрип, шипение, гром). Музыкальные звуки более простые, чем шумы. Комбинация музыкальных звуков может вызвать ощущение шума, но никакая комбинация не даст музыкального звука. Гидроакустика (морская акустика) занимается изучением явлений, происходящих в водной среде, связанных с излучением, приемом и распространением акустических волн. Она включает вопросы разработки и создания акустических приборов, предназначенных для использования в водной среде. Атмосферная акустика изучает звуковые процессы в атмосфере, в частности распространение звуковых волн, условие сверхдальнего распространения звука.

Подводный звуковой канал в океане: а) скорость звука на разных глубинах; б) траектория звуковых лучей, создаваемых источником в точке А; на глубине минимума скорости звука z к происходит концентрация звуковых лучей – это ось звукового канала.

Распространение звуковых колебаний в воздухе.

Физиологическая акустика исследует возможности органов слуха, их устройство и действие. Она изучает образование звуков органами речи и восприятие звуков органами слуха, а также вопросы анализа и синтеза речи. Создание систем; способных анализировать человеческую речь - важный этап на пути проектирования машин, в особенности роботов- манипуляторов и электронно-вычислительных машин, послушным устным распоряжениям оператора. Аппарат для синтеза речи может дать большой экономический эффект. Если по международным телефонным каналам, передавать не сами речевые сигналы, а коды, полученные в результате их анализа, а на выходе линий синтезировать речь, потому же каналу можно передавать несколько раз больше информации. Правда, абонент не услышит настоящего голоса собеседника, но слова-то будут те же, что были сказаны в микрофон. Конечно, это не совсем подходит для семейных разговоров, но удобно для деловых бесед, а именно они- то и перегружают каналы связи. Биологическая акустика рассматривает вопросы звукового и ультразвукового общения животных и изучает механизм локации, которым они пользуются, исследует так же проблемы шумов, вибрации и борьбы сними за оздоровление окружающей среды.

Диаграмма слышимости звуков

УЛЬТРАЗВУК В последнее время все более широкое распространение в производстве находят технологические процессы, основанные на использовании энергии ультразвука. Ультразвук нашел также применение в медицине. В связи с ростом единичных мощностей и скоростей различных агрегатов и машин растут уровни шума, в том числе и в ультразвуковой области частот. Ультразвуком называют механические колебания упругой среды с частотой, превышающей верхний предел слышимости - 20 кГц. Единицей измерения уровня звукового давления является дБ. Единицей измерения интенсивности ультразвука является ватт на квадратный сантиметр (Вт/с ²) Человеческое ухо не воспринимает ультразвук, однако некоторые животные, например, летучие мыши могут и слышать, и издавать ультразвук. Частично воспринимают его грызуны, кошки, собаки, киты, дельфины. Ультразвуковые колебания возникают при работе моторов автомобилей, станков и ракетных двигателей. В практике для получения ультразвука обычно применяют электромеханические генераторы ультразвука, действие которых основано на способности некоторых материалов изменять свои размеры под действием магнитного (магнитострикционные генераторы) или электрического поля (пьезоэлектрические генераторы), при этом генераторы издают звуки высокой частоты.

Вследствие большой частоты (малой длины волны) ультразвук обладает особыми свойствами. Так, подобно свету, ультразвуковые волны могут образовывать строго направленные пучки. Отражение и преломление этих пучков на границе двух сред подчиняется законам геометрической оптики. Он сильно поглощается газами и слабо - жидкостями. В жидкости под воздействием ультразвука образуются пустоты в виде мельчайших пузырьков с кратковременным возрастанием давления внутри них. Кроме того, ультразвуковые волны ускоряют протекание процессов диффузии (взаимопроникновения двух сред друг в друга). Ультразвуковые волны существенно влияют на растворимость вещества и в целом на ход химических реакций. Эти свойства ультразвука и особенности его взаимодействия со средой обусловливают его широкое техническое и медицинское использование. Ультразвук применяют в медицине и биологии для эхолокации, для выявления и лечения опухолей и некоторых дефектов в тканях организма, в хирургии и травматологии для рассечения мягких и костных тканей при различных операциях, для сварки сломанных костей, для разрушения клеток (ультразвук большой мощности). В ультразвуковой терапии для лечебных целей используют колебания 800-900 кГц.

ИНФРАЗВУК Развитие техники и транспортных средств, совершенствование технологических процессов и оборудования сопровождаются увеличением мощности и габаритов машин, что обусловливает тенденцию повышения низкочастотных составляющих в спектрах и появление инфразвука, который является сравнительно новым, не полностью изученным фактором производственной среды. Инфразвуком называют акустические колебания с частотой ниже 20 Гц. Этот частотный диапазон лежит ниже порога слышимости и человеческое ухо не способно воспринимать колебания указанных частот. Производственный инфразвук возникает за счет тех же процессов что и шум слышимых частот. Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механические колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического или гидродинамического происхождения). Максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных источников достигают 100-110 дБ.

ЛЕКЦИЯ 5 УЛЬТРАЗВУК И ИНФРАЗВУК

ЛЕКЦИЯ 5 УЛЬТРАЗВУК И ИНФРАЗВУК

1. Излучатели и приемники ультразвука.

2. Поглощение ультразвука в веществе. Акустические течения и кавитация.

3. Отражение ультразвука. Звуковидение.

4. Биофизическое действие УЗ.

5. Использование УЗ в медицине: терапии, хирургии, диагностике.

6. Инфразвук и его источники.

7. Воздействие инфразвука на человека. Использование инфразвука в медицине.

8. Основные понятия и формулы. Таблицы.

9. Задачи.

Ультразвук - упругие колебания и волны с частотами приблизительно от 20x10 3 Гц (20 кГц) и до 10 9 Гц (1 ГГц). Область частот ультразвука от 1 до 1000 ГГц принято называть гиперзвуком. Ультразвуковые частоты делят на три диапазона:

УНЧ - ультразвук низких частот (20-100 кГц);

УСЧ - ультразвук средних частот (0,1-10 МГц);

УЗВЧ - ультразвук высоких частот (10-1000 МГц).

Каждый диапазон имеет свои особенности медицинского применения.

5.1. Излучатели и приемники ультразвука

Электромеханические излучатели и приемники УЗ используют явление пьезоэлектрического эффекта, сущность которого поясняет рис. 5.1.

Ярко выраженными пьезоэлектрическими свойствами обладают такие кристаллические диэлектрики, как кварц, сегнетова соль и др.

Излучатели ультразвука

Электромеханический УЗ-излучатель использует явление обратного пьезоэлектрического эффекта и состоит из следующих элементов (рис. 5.2):

Рис. 5.1. а - прямой пьезоэлектрический эффект: сжатие и растяжение пьезоэлектрической пластины приводит к возникновению разности потенциалов соответствующего знака;

б - обратный пьезоэлектрический эффект: в зависимости от знака разности потенциалов, приложенной к пьезоэлектрической пластинке, она сжимается или растягивается

Рис. 5.2. Ультразвуковой излучатель

1 - пластины из вещества с пьезоэлектрическими свойствами;

2 - электродов, нанесенных на ее поверхности в виде проводящих слоев;

3 - генератора, подающего на электроды переменное напряжение требуемой частоты.

При подаче на электроды (2) переменного напряжения от генератора (3) пластина (1) испытывает периодические растяжения и сжатия. Возникают вынужденные колебания, частота которых равна частоте изменения напряжения. Эти колебания передаются частицам окружающей среды, создавая механическую волну с соответствующей частотой. Амплитуда колебаний частиц среды вблизи излучателя равна амплитуде колебаний пластины.

К особенностям ультразвука относится возможность получения волн большой интенсивности даже при сравнительно небольших амплитудах колебаний, так как при данной амплитуде плотность

Рис. 5.3. Фокусировка ультразвукового пучка в воде плосковогнутой линзой из плексигласа (частота ультразвука 8 МГц)

потока энергии пропорциональна квадрату частоты (см. формулу 2.6). Предельная интенсивность излучения ультразвука определяется свойствами материала излучателей, а также особенностями условий их использования. Диапазон интенсивности при генерации УЗ в области УСЧ чрезвычайно широк: от 10 -14 Вт/см 2 до 0,1 Вт/см 2 .

Для многих целей необходимы значительно большие интенсивности, чем те, которые могут быть получены с поверхности излучателя. В этих случаях можно воспользоваться фокусировкой. На рисунке 5.3 показана фокусировка ультразвука линзой из плексигласа. Для получения очень больших интенсивностей УЗ используют более сложные методы фокусировки. Так, в фокусе параболоида, внутренние стенки которого выполнены из мозаики кварцевых пластинок или из пьезокерамики титанита бария, на частоте 0,5 МГц удается получать в воде интенсивности ультразвука до 10 5 Вт/см 2 .

Приемники ультразвука

Электромеханические УЗ-приемники (рис. 5.4) используют явление прямого пьезоэлектрического эффекта. В этом случае под действием УЗ-волны возникают колебания кристаллической пластины (1),

Рис. 5.4. Ультразвуковой приемник

в результате которых на электродах (2) возникает переменное напряжение, которое фиксируется регистрирующей системой (3).

В большинстве медицинских приборов генератор ультразвуковых волн одновременно используется и как их приемник.

5.2. Поглощение ультразвука в веществе. Акустические течения и кавитация

По физической сущности УЗ не отличается от звука и представляет собой механическую волну. При ее распространении образуются чередующиеся участки сгущения и разряжения частиц среды. Скорость распространения УЗ и звука в средах одинаковы (в воздухе ~ 340 м/с, в воде и мягких тканях ~ 1500 м/с). Однако высокая интенсивность и малая длина УЗ-волн порождают ряд специфических особенностей.

При распространении УЗ в веществе происходит необратимый переход энергии звуковой волны в другие виды энергии, в основном в теплоту. Это явление называется поглощением звука. Уменьшение амплитуды колебания частиц и интенсивности УЗ вследствие поглощения носит экспоненциальный характер:

где А, А 0 - амплитуды колебаний частиц среды у поверхности вещества и на глубине h; I, I 0 - соответствующие интенсивности УЗ-волны; α - коэффициент поглощения, зависящий от частоты УЗ-волны, температуры и свойств среды.

Коэффициент поглощения - обратная величина того расстояния, на котором амплитуда звуковой волны спадает в «е» раз.

Чем больше коэффициент поглощения, тем сильнее среда поглощает ультразвук.

Коэффициент поглощения (α) растет при увеличении частоты УЗ. Поэтому затухание УЗ в среде во много раз выше, чем затухание слышимого звука.

Наряду с коэффициентом поглощения, в качестве характеристики поглощения УЗ используют и глубину полупоглощения (Н), которая связана с ним обратной зависимостью (Н = 0,347/α).

Глубина полупоглощения (Н) - это глубина, на которой интенсивность УЗ-волны уменьшается вдвое.

Значения коэффициента поглощения и глубины полупоглощения в различных тканях представлены в табл. 5.1.

В газах и, в частности, в воздухе ультразвук распространяется с большим затуханием. Жидкости и твердые тела (в особенности монокристаллы) являются, как правило, хорошими проводниками ультразвука, и затухание в них значительно меньше. Так, например, в воде затухание УЗ при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования УСЧ и УЗВЧ относятся почти исключительно к жидкостям и твердым телам, а в воздухе и газах применяют только УНЧ.

Выделение теплоты и химические реакции

Поглощение ультразвука веществом сопровождается переходом механической энергии во внутреннюю энергию вещества, что ведет к его нагреванию. Наиболее интенсивное нагревание происходит в областях, примыкающих к границам раздела сред, когда коэффициент отражения близок к единице (100 %). Это связано с тем, что в результате отражения интенсивность волны вблизи границы увеличивается и соответственно возрастает количество поглощенной энергии. В этом можно убедиться экспериментально. Надо приложить к влажной руке излучатель УЗ. Вскоре на противоположной стороне ладони возникает ощущение (похожее на боль от ожога), вызванное УЗ, отраженным от границы «кожа-воздух».

Ткани со сложной структурой (легкие) более чувствительны к нагреванию ультразвуком, чем однородные ткани (печень). Сравнительно много тепла выделяется на границе мягких тканей и кости.

Локальный нагрев тканей на доли градусов способствует жизнедеятельности биологических объектов, повышает интенсивность процессов обмена. Однако длительное воздействие может привести к перегреву.

В некоторых случаях используют сфокусированный ультразвук для локального воздействия на отдельные структуры организма. Такое воздействие позволяет добиться контролируемой гипертермии, т.е. нагрева до 41-44 °С без перегрева соседних тканей.

Повышение температуры и большие перепады давления, которыми сопровождается прохождение ультразвука, могут приводить к образованию ионов и радикалов, способных вступать во взаимодействие с молекулами. При этом могут протекать такие химические реакции, которые в обычных условиях неосуществимы. Химическое действие УЗ проявляется, в частности, в расщеплении молекулы воды на радикалы Н + и ОН - с последующим образованием перекиси водорода Н 2 О 2 .

Акустические течения и кавитация

Ультразвуковые волны большой интенсивности сопровождаются рядом специфических эффектов. Так, распространению ультразвуковых волн в газах и в жидкостях сопутствует движение среды, которое называют акустическим течением (рис. 5.5, а). На частотах диапазона УСЧ в ультразвуковом поле с интенсивностью в несколько Вт/см 2 может возникнуть фонтанирование жидкости (рис. 5.5, б) и распыление ее с образованием весьма мелкодисперсного тумана. Эта особенность распространения УЗ используется в ультразвуковых ингаляторах.

К числу важных явлений, возникающих при распространении интенсивного ультразвука в жидкостях, относится акустическая кавитация - рост в ультразвуковом поле пузырьков из имеющихся

Рис. 5.5. а) акустическое течение, возникающее при распространении ультразвука частоты 5 Мгц в бензоле; б) фонтан жидкости, образующийся при падении ультразвукового пучка изнутри жидкости на её поверхность (частота ультразвука 1,5 МГц, интенсивность 15 Вт/см 2)

субмикроскопических зародышей газа или пара в жидкостях до размеров в доли мм, которые начинают пульсировать с частотой УЗ и захлопываются в положительной фазе давления. При схлопывании пузырьков газа возникают большие локальные давления порядка тысяч атмосфер, образуются сферические ударные волны. Такое интенсивное механическое воздействие на частицы, содержащиеся в жидкости, может приводить к разнообразным эффектам, в том числе и разрушающим, даже без влияния теплового действия ультразвука. Механические эффекты особенно значительны при действии фокусированного ультразвука.

Еще одним следствием схлопывания кавитационных пузырьков является сильный разогрев их содержимого (до температуры порядка 10 000 °С), сопровождающийся ионизацией и диссоциацией молекул.

Явление кавитации сопровождается эрозией рабочих поверхностей излучателей, повреждением клеток и т.п. Однако это явление приводит и к ряду полезных эффектов. Так, например, в области кавитации происходит усиленное перемешивание вещества, что используется для приготовления эмульсий.

5.3. Отражение ультразвука. Звуковидение

Как и всем видам волн, ультразвуку присущи явления отражения и преломления. Однако эти явления заметны лишь в том случае, когда размеры неоднородностей сравнимы с длиной волны. Длина УЗ-волны существенно меньше длины звуковой волны (λ = v/ν). Так, длины звуковой и ультразвуковой волн в мягких тканях на частотах 1 кГц и 1 МГц соответственно равны: λ = 1500/1000 = 1,5 м;

1500/1 000 000 = 1,5х10 -3 м = 1,5 мм. В соответствии со сказанным, тело размером 10 см практически не отражает звук с длиной волны с λ = 1,5 м, но является отражателем для УЗ-волны с λ = 1,5 мм.

Эффективность отражения определяется не только геометрическими соотношениями, но и коэффициентом отражения r, который зависит от отношения волновых сопротивлений сред х (см. формулы 3.8, 3.9):

Для значений х, близких к 0, отражение является практически полным. Это является препятствием для перехода УЗ из воздуха в мягкие ткани (х = 3х10 -4 , r = 99,88%). Если УЗ-излучатель приложить непосредственно к коже человека, то ультразвук не проникнет внутрь, а будет отражаться от тонкого слоя воздуха между излучателем и кожей. В данном случае малые значения х играют отрицательную роль. Чтобы исключить воздушный слой, поверхность кожи покрывают слоем соответствующей смазки (водным желе), которая играет роль переходной среды, уменьшающей отражение. Напротив, для обнаружения неоднородностей в среде малые значения х являются положительным фактором.

Значения коэффициента отражения на границах различных тканей приведены в табл. 5.2.

Интенсивность принимаемого отраженного сигнала зависит не только от величины коэффициента отражения, но и от степени поглощения ультразвука средой, в которой он распространяется. Поглощение УЗволны приводит к тому, что эхосигнал, отраженный от структуры, расположенной в глубине, значительно слабее того, который образовался при отражении от подобной структуры, расположенной недалеко от поверхности.

На отражении УЗ-волн от неоднородностей основано звуковидение, используемое в медицинских ультразвуковых исследованиях (УЗИ). В этом случае ультразвук, отраженный от неоднородностей (отдельные органы, опухоли), преобразуется в электрические колебания, а последние - в световые, что позволяет видеть на экране те или иные предметы в непрозрачной для света среде. На рисунке 5.6 дано изображение

Рис. 5.6. Изображение человеческого плода возраста 17 недель, полученное с помощью ультразвука частотой 5 МГц

человеческого плода возраста 17 недель, полученное с помощью ультразвука.

На частотах УЗВЧ-диапазона создан ультразвуковой микроскоп - прибор, аналогичный обычному микроскопу, преимущество которого перед оптическим состоит в том, что при биологических исследованиях не требуется предварительного окрашивания объекта. На рисунке 5.7 показаны фотографии красных кровяных телец, полученные оптическим и ультразвуковым микроскопами.

Рис. 5.7. Фотографии красных кровяных телец, полученные оптическим (а) и УЗ (б) микроскопами

При увеличении частоты УЗ-волн увеличивается разрешающая способность (можно обнаруживать более мелкие неоднородности), но уменьшается их проникающая способность, т.е. уменьшается глубина, на которой можно исследовать интересующие структуры. Поэтому частоту УЗ выбирают так, чтобы сочетать достаточное разрешение с необходимой глубиной исследования. Так, для УЗ-исследования щитовидной железы, расположенной непосредственно под кожей, используются волны частоты 7,5 МГц, а для исследования органов брюшной полости используют частоту 3,5-5,5 МГц. Кроме того, учитывают и толщину жирового слоя: для худых детей используется частота 5,5 МГц, а для полных детей и взрослых - частота 3,5 МГц.

5.4. Биофизическое действие УЗ

При действии ультразвука на биологические объекты в облучаемых органах и тканях на расстояниях, равных половине длины волны, могут возникать разности давлений от единиц до десятков атмосфер. Столь интенсивные воздействия приводят к разнообразным биологическим эффектам, физическая природа которых определяется совместным действием механических, тепловых и физикохимических явлений, сопутствующих распространению ультразвука в среде.

Общее воздействие ультразвука на ткани и организм в целом

Биологическое действие ультразвука, т.е. изменения, вызываемые в жизнедеятельности и структурах биологических объектов при воздействии на них ультразвука, определяется, главным образом, его интенсивностью и длительностью облучения и может оказывать как положительное, так и отрицательное влияние на жизнедеятельность организмов. Так, возникающие при сравнительно небольших интенсивностях УЗ (до 1,5 Вт/см 2) механические колебания частиц производят своеобразный микромассаж тканей, способствующий лучшему обмену веществ и лучшему снабжению тканей кровью и лимфой. Локальный нагрев тканей на доли и единицы градусов, как правило, способствует жизнедеятельности биологических объектов, повышая интенсивность процессов обмена веществ. Ультразвуковые волны малой и средней интенсивности вызывают в живых тканях положительные биологические эффекты, стимулирующие протекание нормальных физиологических процессов.

Успешное применение УЗ указанных интенсивностей находит применение в неврологии при реабилитации таких заболеваний, как хронический радикулит, полиартрит, неврит, невралгия. Ультразвук используется при лечении болезней позвоночника, суставов (разрушение солевых наслоений в суставах и полостях); при лечении различных осложнений после повреждения суставов, связок, сухожилий и т.д.

УЗ большой интенсивности (3-10 Вт/см 2) оказывает вредное воздействие на отдельные органы и человеческий организм в целом. Высокая интенсивность ультразвука может привести к возникновению

в биологических средах акустической кавитации, сопровождающейся механическим разрушением клеток и тканей. Длительные интенсивные воздействия ультразвуком могут привести к перегреву биологических структур и к их разрушению (денатурация белков и др.). Воздействие интенсивного ультразвука может иметь и отдаленные последствия. Например, при длительных воздействиях УЗ частотой 20-30 кГц, возникающих в некоторых производственных условиях, у человека появляются расстройства нервной системы, повышается утомляемость, существенно поднимается температура, возникают нарушения органа слуха.

Очень интенсивный УЗ для человека смертелен. Так, в Испании 80 добровольцев были подвергнуты действию УЗ турбулентных двигателей. Результаты этого варварского эксперимента оказались плачевными: 28 человек погибли, остальные оказались полностью или частично парализованы.

Тепловой эффект, производимый УЗ большой интенсивности, может быть весьма значительным: при ультразвуковом облучении мощностью 4 Вт/см 2 в течение 20 с температура тканей организма на глубине 2-5 см повышается на 5-6 °С.

В целях предотвращения профессиональных заболеваний у лиц, работающих на ультразвуковых установках, когда возможен контакт с источниками ультразвуковых колебаний, для защиты рук обязательно необходимо применение 2 пар перчаток: наружных резиновых и внутренних - хлопчатобумажных.

Действие ультразвука на клеточном уровне

В основе биологического действия УЗ могут лежать также вторичные физико-химические эффекты. Так, при образовании акустических потоков может происходить перемешивание внутриклеточных структур. Кавитация приводит к разрыву молекулярных связей в биополимерах и других жизненно важных соединениях и к развитию окислительно-восстановительных реакций. Ультразвук повышает проницаемость биологических мембран, вследствие чего происходит ускорение процессов обмена веществ из-за диффузии. Изменение потока различных веществ через цитоплазматическую мембрану приводит к изменению состава внутриклеточной среды и микроокружения клетки. Это влияет на скорость биохимических реакций с участием ферментов, чувствительных к содержанию в среде тех или

иных ионов. В некоторых случаях изменение состава среды внутри клетки может привести к ускорению ферментативных реакций, что наблюдается при воздействии на клетки ультразвуком низких интенсивностей.

Многие внутриклеточные ферменты активируются ионами калия. Поэтому при повышении интенсивности ультразвука более вероятным становится эффект подавления ферментативных реакций в клетке, так как в результате деполяризации клеточных мембран концентрация ионов калия во внутриклеточной среде уменьшается.

Действие ультразвука на клетки может сопровождается следующими явлениями:

Нарушением микроокружения клеточных мембран в виде изменения градиентов концентрации различных веществ около мембран, изменением вязкости среды внутри и вне клетки;

Изменением проницаемости клеточных мембран в виде ускорения обычной и облегченной диффузии, изменением эффективности активного транспорта, нарушением структуры мембран;

Нарушением состава внутриклеточной среды в виде изменения концентрации различных веществ в клетке, изменением вязкости;

Изменением скоростей ферментативных реакций в клетке вследствие изменения оптимальных концентраций веществ, необходимых для функционирования ферментов.

Изменение проницаемости клеточных мембран является универсальной реакцией на УЗ-воздействие, независимо от того, какой из факторов УЗ, действующих на клетку, доминирует в том или ином случае.

При достаточно большой интенсивности УЗ происходит разрушение мембран. Однако разные клетки обладают различной резистентностью: одни клетки разрушаются при интенсивности 0,1 Вт/см 2 , другие - при 25 Вт/см 2 .

В определенном интервале интенсивностей наблюдаемые биологические эффекты ультразвука обратимы. Верхняя граница этого интервала 0,1 Вт/см 2 при частоте 0,8-2 МГц принята в качестве порога. Превышение этой границы приводит к выраженным деструктивным изменениям в клетках.

Разрушение микроорганизмов

Облучение ультразвуком с интенсивностью, превышающей порог кавитации, используют для разрушения имеющихся в жидкости бактерий и вирусов.

5.5. Использование УЗ в медицине: терапии, хирургии, диагностике

Деформации под воздействием УЗ используются при измельчении или диспергировании сред.

Явление кавитации используется для получения эмульсий несмешивающихся жидкостей, для очистки металлов от окалины и жировых пленок.

УЗ-терапия

Терапевтическое действие УЗ обусловлено механическим, тепловым, химическим факторами. Их совместное действие улучшает проницаемость мембран, расширяет кровеносные сосуды, улучшает обмен веществ, что способствует восстановлению равновесного состояния организма. Дозированным пучком УЗ можно провести мягкий массаж сердца, легких и других органов и тканей.

В отоларингологии УЗ воздействует на барабанную перепонку, слизистую оболочку носа. Таким способом осуществляют реабилитацию хронического насморка, болезней гайморовых полостей.

ФОНОФОРЕЗ - введение с помощью УЗ в ткани через поры кожи лекарственных веществ. Этот метод аналогичен электрофорезу, однако, в отличие от электрического поля, УЗ-поле перемещает не только ионы, но и незаряженные частицы. Под действием УЗ увеличивается проницаемость клеточных мембран, что способствует проникновению лекарственных веществ в клетку, тогда как при электрофорезе лекарственные вещества концентрируются в основном между клетками.

АУТОГЕМОТЕРАПИЯ - внутримышечное введение человеку собственной крови, взятой из вены. Эта процедура оказывается более эффективной, если взятую кровь перед вливанием облучить УЗ.

УЗ-облучение повышает чувствительность клетки к воздействию химических веществ. Это позволяет создавать менее вредные

вакцины, так как при их изготовлении можно использовать химические реактивы меньшей концентрации.

Предварительное воздействие УЗ усиливает действие γ- и СВЧоблучения на опухоли.

В фармацевтической промышленности ультразвук применяется для получения эмульсий и аэрозолей некоторых лекарственных веществ.

В физиотерапии УЗ используется для локального воздействия, осуществляемого с помощью соответствующего излучателя, контактно наложенного через мазевую основу на определенную область тела.

УЗ-хирургия

УЗ-хирургия подразделяется на две разновидности, одна из которых связана с воздействием на ткани собственно звуковых колебаний, вторая - с наложением УЗ-колебаний на хирургический инструмент.

Разрушение опухолей. Несколько излучателей, укрепленных на теле пациента, испускают пучки УЗ, фокусирующиеся на опухоли. Интенсивность каждого пучка недостаточна для повреждения здоровой ткани, но в том месте, где пучки сходятся, интенсивность возрастает и опухоль разрушается под действием кавитации и тепла.

В урологии с помощью механического действия УЗ дробят камни в мочевых путях и этим спасают больных от операций.

Сваривание мягких тканей. Если сложить два разрезанных кровеносных сосуда и прижать их друг к другу, то после облучения образуется сварной шов.

Сваривание костей (ультразвуковой остеосинтез). Область перелома заполняют измельченной костной тканью, смешанной с жидким полимером (циакрин), который под действием УЗ быстро полимеризуется. После облучения образуется прочный сварной шов, который постепенно рассасывается и заменяется костной тканью.

Наложение УЗ-колебаний на хирургические инструменты (скальпели, пилки, иглы) существенно снижает усилия резания, уменьшает болевые ощущения, оказывает кровоостанавливающее и стерилизующее действия. Амплитуда колебаний режущего инструмента при частоте 20-50 кГц составляет 10-50 мкм. УЗ-скальпели позволяют проводить операции в дыхательных органах без вскрытия грудной клетки,

операции в пищеводе и на кровеносных сосудах. Вводя длинный и тонкий УЗ-скальпель в вену, можно разрушить холестериновые утолщения в сосуде.

Стерилизация. Губительное действие УЗ на микроорганизмы используется для стерилизации хирургических инструментов.

В ряде случаев ультразвук используют в сочетании с другими физическими воздействиями, например с криогенным, при хирургическом лечении гемангиом и рубцов.

УЗ-диагностика

Ультразвуковая диагностика - совокупность методов исследования здорового и больного организма человека, основанных на использовании ультразвука. Физической основой УЗ-диагностики является зависимость параметров распространения звука в биологических тканях (скорость звука, коэффициент затухания, волновое сопротивление) от вида ткани и ее состояния. УЗ-методы позволяют осуществить визуализацию внутренних структур организма, а также исследовать движение биологических объектов внутри организма. Основная особенность УЗ-диагностики - возможность получить информацию о мягких тканях, незначительно различающихся по плотности или упругости. УЗ-метод исследования обладает высокой чувствительностью, может использоваться для обнаружения образований, не выявляемых с помощью рентгена, не требует применения контрастных веществ, безболезнен и не имеет противопоказаний.

Для диагностических целей используется УЗ частотой от 0,8 до 15 МГц. Низкие частоты применяются при исследовании глубоко расположенных объектов или при исследовании, проводимом через костную ткань, высокие - для визуализации объектов, близко расположенных к поверхности тела, для диагностики в офтальмологии, при исследовании поверхностно расположенных сосудов.

Наибольшее распространение в УЗ-диагностике получили эхолокационные методы, основанные на отражении или рассеянии импульсных УЗ-сигналов. В зависимости от способа получения и характера представления информации приборы для УЗ-диагностики разделяют на 3 группы: одномерные приборы с индикацией типа А; одномерные приборы с индикацией типа M; двумерные приборы с индикацией типа В.

При УЗ-диагностике с помощью прибора типа А излучатель, испускающий короткие (длительностью порядка 10 -6 с) УЗ-импульсы, прикладывается к исследуемому участку тела через контактное вещество. В паузах между импульсами прибор принимает импульсы, отраженные от различных неоднородностей в тканях. После усиления эти импульсы наблюдаются на экране электроннолучевой трубки в виде отклонений луча от горизонтальной линии. Полная картина отраженных импульсов называется одномерной эхограммой типа А. На рисунке 5.8 показана эхограмма, полученная при эхоскопии глаза.

Рис. 5.8. Эхоскопия глаза по А-методу:

1 - эхосигнал от передней поверхности роговицы; 2, 3 - эхосигналы от передней и задней поверхностей хрусталика; 4 - эхосигнал от сетчатки и структур заднего полюса глазного яблока

Эхограммы тканей различного типа отличаются друг от друга количеством импульсов и их амплитудой. Анализ эхограммы типа А во многих случаях позволяет получить дополнительные сведения о состоянии, глубине залегания и протяженности патологического участка.

Одномерные приборы с индикацией типа А применяются в неврологии, нейрохирургии, онкологии, акушерстве, офтальмологии и др. областях медицины.

В приборах с индикацией типа M отраженные импульсы после усиления подаются на модулирующий электрод электронно-лучевой трубки и представляются в виде черточек, яркость которых связана с амплитудой импульса, а ширина - с его длительностью. Развертка этих черточек во времени дает картину отдельных отражающих структур. Этот тип индикации широко используется в кардиографии. УЗ-кардиограмма может быть зафиксирована при помощи электронно-лучевой трубки с памятью или на бумажной ленте самописца. Этим методом осуществляется запись движений элементов сердца, что позволяет определять стеноз митрального клапана, врожденные пороки сердца и др.

При использовании методов регистрации типов А и M преобразователь находится в фиксированном положении на теле пациента.

В случае индикации типа В преобразователь перемещается (осуществляет сканирование) вдоль поверхности тела, и на экране электронно-лучевой трубки фиксируется двумерная эхограмма, воспроизводящая поперечное сечение исследуемой области тела.

Разновидностью метода В является мультисканирование, при котором механическое перемещение датчика заменяется последовательным электрическим переключением ряда элементов, расположенных на одной линии. Мультисканирование позволяет наблюдать исследуемые сечения практически в реальном масштабе времени. Другой разновидностью метода В является секторное сканирование, при котором отсутствует движение эхозонда, а изменяется угол введения УЗ-луча.

УЗ-приборы с индикацией типа В используются в онкологии, акушерстве и гинекологии, урологии, отоларингологии, офтальмологии и др. Модификации приборов типа В с мультисканированием и секторным сканированием используют в кардиологии.

Все эхолокационные методы УЗ-диагностики позволяют так или иначе регистрировать внутри организма границы областей с различными волновыми сопротивлениями.

Новый метод УЗ-диагностики - реконструктивная (или вычислительная) томография - дает пространственное распределение параметров распространения звука: коэффициента затухания (аттенюационная модификация метода) или скорости звука (рефракционная модификация). В этом методе исследуемое сечение объекта прозвучивается многократно в различных направлениях. Информация о координатах прозвучивания и об ответных сигналах обрабатывается на ЭВМ, в результате чего на дисплее отображается реконструированная томограмма.

В последнее время начал внедряться метод эластометрии для исследования тканей печени как в норме, так и при различных стадиях микроза. Суть метода такова. Датчик устанавливается перпендикулярно поверхности тела. При помощи вибратора, встроенного в датчик, создается низкочастотная звуковая механическая волна (ν = 50 Гц, А = 1 мм), скорость распространения которой по подлежащим тканям печени оценивается при помощи ультразвука с частотой ν = 3,5 МГц (по сути, осуществляется эхолокация). С использованием

модуль Е (эластичность) ткани. Для пациента проводится серия измерений (не менее 10) в межреберных промежутках в проекции положения печени. Анализ всех данных происходит автоматически, аппарат выдает количественную оценку эластичности (плотности), которая представляется как в числовом, так и в цветовом виде.

Для получения информации о движущихся структурах организма используются методы и приборы, работа которых основана на эффекте Доплера. Такие приборы содержат, как правило, два пьезоэлемента: излучатель УЗ, работающий в непрерывном режиме, и приемник отраженных сигналов. Измеряя доплеровский сдвиг частоты УЗ-волны, отраженной от подвижного объекта (например, от стенки сосуда), определяют скорость движения отражающего объекта (см. формулу 2.9). В наиболее совершенных приборах этого типа применяется импульсно-доплеровский (когерентный) способ локации, позволяющий выделить сигнал из определенной точки пространства.

Приборы с использованием эффекта Доплера применяются для диагностики заболеваний сердечно-сосудистой системы (определение

движения участков сердца и стенок сосудов), в акушерстве (исследование сердцебиения плода), для исследования кровотока и др.

Осуществляется исследование органов через пищевод, с которым они граничат.

Сопоставление ультразвукового и рентгеновского «просвечиваний»

В некоторых случаях ультразвуковое просвечивание имеет преимущество перед рентгеновским. Это связано с тем, что рентгеновские лучи дают четкое изображение «твердых» тканей на фоне «мягких». Так, например, на фоне мягких тканей хорошо видны кости. Для получения рентгеновского изображения мягких тканей на фоне других мягких тканей (например, кровеносный сосуд на фоне мышц) сосуд нужно заполнить веществом, хорошо поглощающим рентгеновское излучение (контрастное вещество). Ультразвуковое просвечивание, благодаря уже указанным особенностям, дает в этом случае изображение без применения контрастных веществ.

При рентгеновском обследовании дифференцируется разность плотностей до 10 %, при ультразвуковом - до 1 %.

5.6. Инфразвук и его источники

Инфразвук - упругие колебания и волны с частотами, лежащими ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвукового диапазона принимают 16-20 Гц. Такое определение условно, поскольку при достаточной интенсивности слуховое восприятие возникает и на частотах в единицы Гц, хотя при этом исчезает тональный характер ощущения и делаются различимыми лишь отдельные циклы колебаний. Нижняя частотная граница инфразвука неопределенна; в настоящее время область его изучения простирается вниз примерно до 0,001 Гц.

Инфразвуковые волны распространяются в воздушной и водной средах, а также в земной коре (сейсмические волны). Основная особенность инфразвука, обусловленная его низкой частотой, - малое поглощение. При распространении в глубоком море и в атмосфере на уровне земли инфразвуковые волны частоты 10-20 Гц затухают на расстоянии 1000 км не более чем на несколько децибел. Известно, что звуки

извержений вулканов и атомных взрывов могут многократно обходить вокруг земного шара. Из-за большой длины волны мало и рассеяние инфразвука. В естественных средах заметное рассеяние создают лишь очень крупные объекты - холмы, горы, высокие здания.

Естественными источниками инфразвука являются метеорологические, сейсмические и вулканические явления. Инфразвук генерируется атмосферными и океаническими турбулентными флуктуациями давления, ветром, морскими волнами (в том числе и приливными), водопадами, землетрясениями, обвалами.

Источниками инфразвука, связанными с человеческой деятельностью, являются взрывы, орудийные выстрелы, ударные волны от сверхзвуковых самолетов, удары копров, работа реактивных двигателей и др. Инфразвук содержится в шуме двигателей и технологического оборудования. Вибрации зданий, создаваемые производственными и бытовыми возбудителями, как правило, содержат инфразвуковые компоненты. Существенный вклад в инфразвуковое загрязнение среды дают транспортные шумы. Например, легковые автомобили на скорости 100 км/ч создают инфразвук с уровнем интенсивности до 100 дБ. В моторном отделении крупных судов зарегистрированы инфразвуковые колебания, создаваемые работающими двигателями, с частотой 7-13 Гц и уровнем интенсивности 115 дБ. На верхних этажах высотных зданий, особенно при сильном ветре, уровень интенсивности инфразвука достигает

Инфразвук почти невозможно изолировать - на низких частотах все звукопоглощающие материалы практически полностью теряют свою эффективность.

5.7. Воздействие инфразвука на человека. Использование инфразвука в медицине

На человека инфразвук оказывает, как правило, отрицательное действие: вызывает угнетенное настроение, усталость, головную боль, раздражение. У человека, подвергнутого воздействию инфразвука низкой интенсивности, появляются симптомы «морской болезни», тошнота, головокружение. Появляется головная боль, повышается утомляемость, слабеет слух. При частоте 2-5 Гц

и уровне интенсивности 100-125 дБ субъективная реакция сводится к ощущению давления в ухе, затруднению при глотании, вынужденной модуляции голоса и затруднению речи. Воздействие инфразвука негативно сказывается на зрении: ухудшаются зрительные функции, снижается острота зрения, сужается поле зрения, ослабляется аккомодационная способность, нарушается устойчивость фиксации глазом наблюдаемого объекта.

Шум на частоте 2-15 Гц при уровне интенсивности 100 дБ приводит к возрастанию ошибки слежения за стрелочными индикаторами. Проявляется судорожное подергивание глазного яблока, нарушение функции органов равновесия.

Летчики и космонавты, подвергнутые на тренировках воздействию инфразвука, медленнее решали даже простые арифметические задачи.

Существует предположение, что различные аномалии в состоянии людей при плохой погоде, объясняемые климатическими условиями, являются на самом деле следствием воздействия инфразвуковых волн.

При средней интенсивности (140-155 дБ) могут наступать обмороки, временная потеря зрения. При больших интенсивностях (порядка 180 дБ) может наступить паралич со смертельным исходом.

Предполагают, что негативное влияние инфразвука связано с тем, что в инфразвуковой области лежат частоты собственных колебаний некоторых органов и частей тела человека. Это вызывает нежелательные резонансные явления. Укажем некоторые частоты собственных колебаний для человека:

Тело человека в положении лежа - (3-4) Гц;

Грудная клетка - (5-8) Гц;

Брюшная полость - (3-4) Гц;

Глаза - (12-27) Гц.

Особенно вредно воздействие инфразвука на сердце. При достаточной мощности возникают вынужденные колебания сердечной мышцы. При резонансе (6-7 Гц) их амплитуда возрастает, что может привести к кровоизлиянию.

Использование инфразвука в медицине

В последние годы инфразвук стали широко применять в медицинской практике. Так, в офтальмологии инфразвуковые волны

с частотами до 12 Гц используются при лечении близорукости. При лечении заболеваний век используется инфразвук для фонофореза (рис. 5.9), а также для очищения раневых поверхностей, для улучшения гемодинамики и регенерации в веках, массажа (рис. 5.10) и т.д.

На рисунке 5.9 показано применение инфразвука для лечения аномалии развития слезоотводящих путей у новорожденных.

На одном из этапов лечения осуществляется массаж слезного мешка. При этом генератор инфразвука создает избыточное давление в слезном мешке, которое способствует разрыву эмбриональной ткани в слезоносовом канале.

Рис. 5.9. Схема инфразвукового фонофореза

Рис. 5.10. Массаж слезного мешка

5.8. Основные понятия и формулы. Таблицы

Таблица 5.1. Коэффициент поглощения и глубина полупоглощения на частоте 1 МГц

Таблица 5.2. Коэффициент отражения на границах различных тканей

5.9. Задачи

1. Отражение волн от мелких неоднородностей становится заметным, когда их размеры превосходят длину волны. Оценить минимальный размер d почечного камня, который может быть обнаружен методом УЗ-диагностики при частоте ν = 5 МГц. Скорость УЗ-волн v = 1500 м/с.

Решение

Найдем длину волны: λ = v/ν = 1500/(5*10 6) = 0,0003 м = 0,3 мм. d > λ.

Ответ: d > 0,3 мм.

2. В некоторых физиотерапевтических процедурах используется ультразвук частоты ν = 800 кГц и интенсивности I = 1 Вт/см 2 . Найти амплитуду колебания молекул мягких тканей.

Решение

Интенсивность механических волн определяется формулой (2.6)

Плотность мягких тканей ρ « 1000 кг/м 3 .

круговая частота ω = 2πν ≈ 2х3,14х800х10 3 ≈ 5х10 6 с -1 ;

скорость ультразвука в мягких тканях ν ≈ 1500 м/с.

Необходим перевод интенсивности в СИ: I = 1 Вт/см 2 = 10 4 Вт/м 2 .

Подставив численные значения в последнюю формулу, найдем:

Столь малое смещение молекул при прохождении ультразвука указывает на то, что его действие проявляется на клеточном уровне. Ответ: А = 0,023 мкм.

3. Стальные детали проверяют на качество ультразвуковым дефектоскопом. На какой глубине h в детали обнаружена трещина и какова толщина d детали, если после излучения ультразвукового сигнала были получены два отраженных сигнала через 0,1 мс и 0,2 мс? Скорость распространения ультразвуковой волны в стали равна v = 5200 м/с.

Решение

2h = tv →h = tv/2. Ответ: h = 26 см; d = 52 см.

Инфразвук - это колебание в воздухе, в жидкой или твердой средах с частотой меньше 16 Гц.

Инфразвук человек не слышит, однако ощущает; он оказывает разрушительное действие на организм человека. Высокий уровень инфразвука вызывает нарушение функции вестибулярного аппарата, предопределяя головокружение, головную боль. Снижается внимание, работоспособность. Возникает чувство страха, общее недомогание. Существует мнение, что инфразвук сильно влияет на психику людей.
Все механизмы, которые работают при частотах вращения меньше 20 об/с, излучают инфразвук. При движении автомобиля со скоростью более 100 км/час он является источником инфразвука, который возникает за счет срыва воздушного потока с его поверхности. В машиностроительной отрасли инфразвук возникает при работе вентиляторов, компрессоров, двигателей внутреннего сгорания, дизельных двигателей.
Согласно действующим нормативным документам уровни звукового давления в октавных полосах со среднегеометрическими частотами 2, 4, 8, 16, Гц должен быть не больше 105 дБ, а для полос с частотой 32 Гц - не более 102 дБ. Благодаря большой длине инфразвук распространяется в атмосфере на большие расстояния. Практически невозможно остановить инфразвук при помощи строительных конструкций на пути его распространения. Неэффективны также средства индивидуальной зашиты. Действенным средством защиты является снижение уровня инфразвука в источнике его образования. Среди таких мероприятий можно выделить следующие:
увеличение частот вращения валов до 20 и больше оборотов в секунду;
повышение жесткости колеблющихся конструкций больших размеров;
устранение низкочастотных вибраций;
внесение конструктивных изменений в строение источников, что позволяет перейти из области инфразвуковых колебаний в область звуковых; в этом случае их снижение может быть достигнуто применением звукоизоляции и звукопоглощения.

Ультразвук.

Ультразвук широко используется во многих отраслях промыш¬ленности. Источниками ультразвука являются генераторы, которые работают в диапазоне частот от 12 до 22 кГц для очистки отливок, в аппаратах для очистки газов. В гальванических цехах ультразвук возникает во время работы травильных и обезжиривающих ванн. Его влияние наблюдается на расстоянии 25-50 м от оборудования. При загрузке и выгрузке деталей имеет место контактное влияние ультразвука.
Ультразвуковые генераторы используются также при плазменной и диффузионной сварке, резке металлов, при напылении металлов.
Ультразвук высокой интенсивности возникает во время удаления загрязнений, при химическом травлении, обдувке струей сжатого воздуха при очистке деталей, при сборке.
Ультразвук вызывает функциональные нарушения нервной системы, головную боль, изменения кровяного давления, состава и свойств крови, предопределяет потерю слуховой чувствительности, повышает утомляемость.
Ультразвук влияет на человека через воздух, а также через жидкую и твердую среды.
Ультразвуковые колебания распространяются во всех упомянутых выше средах с частотой более -16 000 Гц.
Для защиты от ультразвука, который передается через воздух, применяется метод звукоизоляции. Звукоизоляция эффективна в области высоких частот. Между оборудованием и работниками можно устанавливать экраны. Ультразвуковые установки можно располагать в специальных помещениях. Эффективным средством защиты является использование кабин с дистанционным управлением, расположение оборудования в звукоизолированных укрытиях. Для укрытий используют сталь, дюралюминий, оргстекло, текстолит, другие звукопоглощающие материалы.
Звукоизолирующие кожухи на ультразвуковом оборудовании должны иметь блокировочную систему, которая выключает преобра¬зователи при нарушении герметичности

Применение ультразвука в биологии.
Способность ультразвука разрывать оболочки клеток нашла применение в
биологических исследованиях, например, при необходимости отделить клетку от
ферментов. Ультразвук используется также для разрушения таких
внутриклеточных структур, как митохондрии и хлоропласты с целью изучения
взаимосвязи между их структурой и функциями (аналитическая цитология).
Другое применение ультразвука в биологии связано с его способностью
вызывать мутации. Исследования, проведенные в Оксфорде, показали, что
ультразвук даже малой интенсивности может повредить молекулу ДНК.
Искусственное целенаправленное создание мутаций играет большую роль в
селекции растений. Главное преимущество ультразвука перед другими
мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том,
что с ним чрезвычайно легко работать.
Инфразук возникает при работе промышленных установок, автомобилей, тракторов и бытовых приборов. Например, сельскохозяйственные тракторы на резиновом ходу и грузовики имеют максимальные вибрации в диапазоне 1,5–3,5 Гц, гусеничные тракторы – около 5 Гц. Такие звуки не слышны, тем не менее они оказывают действие на организм человека: появляется повышенная нервозность, чувство страха, приступы тошноты. Иногда из носа и ушей идет кровь.
Свойство инфразвука вызывать страх используется полицией в ряде стран мира. При необходимости разогнать толпу полицейские включают мощные генераторы ультразвука, частоты которых отличаются на 5–9 Гц. Ультразвук не слышен, однако биения, возникающие из-за различия частот генераторов, имеют инфразуковую частоту и вызывают у многих людей неосознанное чувство страха, желание поскорее уйти из места, где действует инфразвук.
Механизм восприятия инфразвука и его физиологического действия на человека пока полностью не установлен. Возможно, что действие инфразвука связано с возникновением резонанса – резкого усиления колебаний при совпадении частоты звука с собственной частотой какого-либо предмета или устройства.
Разного рода резонансы возможны и в организме человека. При этом важную роль играет центральная нервная система, в которую в виде электрических импульсов поступают сигналы от всех рецепторов. Многим знакомы неприятные ощущения после длительной езды в автобусе, поезде, плавания на корабле или качания на качелях. Говорят: «Меня укачало». Все эти ощущения связаны с действием инфразвука на вестибулярный аппарат, собственная частота которого близка к 6 Гц.
При воздействии на человека инфразвука с частотами, близкими к 6 Гц, могут отличаться друг от друга картины, создаваемые левым и правым глазом, начнет «ломаться» горизонт, возникнут проблемы с ориентацией в пространстве, придут необъяснимая тревога, страх. Подобные ощущения вызывают и пульсации света на частотах 4–8 Гц. Еще египетские жрецы, чтобы добиться признания у пленника, привязывали его и с помощью зеркала освещали глаза пульсирующим солнечным лучом. Через некоторое время у пленника появлялись судороги, шла пена изо рта, его психика подавлялась, и он отвечал на вопросы.

Сейчас акустика, как область физики рассматривает более широкий спектр упругих колебаний - от самых низких до предельно высоких, вплоть до 1012 - 1013 Гц. Не слышимые человеком звуковые волны с частотами ниже 16 Гц называют инфразвуком, звуковые волны с частотами от 20 000 Гц до 109Гц - ультразвуком, а колебания с частотами выше чем 109Гц называют гиперзвуком.

Этим неслышимым звукам нашли много применения.

Ультразвуки и инфразвуки имеют очень важную роль и в живом мире. Так, например, рыбы и другие морские животные чутко улавливают инфразвуковые волны, создаваемые штормовыми волнениями. Таким образом, они заранее чувствуют приближение шторма или циклона, и уплывают в более безопасное место. Инфразвук - это составляющая звуков леса, моря, атмосферы.

Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полете, они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).

ИНФРАЗВУК (от лат. infra - ниже, под), не слышимые человеческим ухом упругие волны низкой частоты (менее 16 Гц). При больших амплитудах инфразвук ощущается как боль в ухе. Возникает при землетрясениях, подводных и подземных взрывах, во время бурь и ураганов, от волн цунами и пр. Поскольку инфразвук слабо поглощается, он распространяется на большие расстояния и может служить предвестником бурь, ураганов, цунами.

В земной коре наблюдаются сотрясения и вибрации инфразвуковых частот от самых разнообразных источников, в том числе от взрывов обвалов и транспортных возбудителей.

Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. Распространение инфразвука на большие расстояния в море даёт возможность предсказания стихийного бедствия - цунами. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды.

Инфразвук человек не слышит, однако ощущает; он оказывает разрушительное действие на организм человека. Высокий уровень инфразвука вызывает нарушение функции вестибулярного аппарата, предопределяя головокружение, головную боль. Снижается внимание, работоспособность. Возникает чувство страха, общее недомогание. Существует мнение, что инфразвук сильно влияет на психику людей. Все механизмы, которые работают при частотах вращения меньше 20 об/с, излучают инфразвук. При движении автомобиля со скоростью более 100 км/час он является источником инфразвуки, который возникает за счет срыва воздушного потока с его поверхности. В машиностроительной отрасли инфразвук возникает при работе вентиляторов, компрессоров двигателей внутреннего сгорания, дизельных двигателей. Согласно действующим нормативным документам уровни звукового давления в октавных полосах со среднегеометрическими частотами 2, 4, 8, 16, Гц должен быть не больше 105 дБ., а для полос с частотой 32 Гц не более 102 дБ. Благодаря большой длине инфразвук распространяется в атмосфере на большие расстояния. Практически невозможно остановить инфразвук при помощи строительных конструкций на пути его распространения. Неэффективны также средства индивидуальной зашиты. Действенным средством защиты является снижение уровня инфразвука в источнике его образования. Среди таких мероприятий можно выделить следующие:- увеличение частот вращения валов до 20 и больше оборотов в секунду;- повышение жесткости колеблющихся конструкций больших размеров; - устранение низкочастотных вибраций: - внесение конструктивных изменений в строение источников, что позволяет перейти т области инфразвуковых колебаний в область звуковых; в этом случае их снижение может быть достигнуто применением звукоизоляции и звукопоглощения.

Основные источники инфразвуковых волн

Развитие промышленного производства и транспорта привело к значительному увеличению источников инфразвука в окружающей среде и возрастанию интенсивности уровня инфразвука.

Основные техногенные источники инфразвуковых колебаний в городах приведены в таблице.

Источник инфразвука Характерный частотный

диапазон инфразвука Уровни инфразвука

Автомобильный транспорт Весь спектр инфразвукового диапазона Снаружи 70-90 дБ, внутри до 120 дБ

Железнодорожный транспорт и трамваи 10-16 Гц Внутри и снаружи от 85 до 120 дБ

Промышленные установки аэродинамического и ударного действия 8-12 Гц До 90-105 дБ

Вентиляция промышленных установок и помещений, то же в метрополитене 3-20 Гц До 75-95 дБ

Реактивные самолеты Около 20 Гц Снаружи до 130 дБ

Ультразвук - упругие волны высокой частоты, которым посвящены специальные разделы науки и техники. Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до нескольких миллиардов герц. Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно

Человеческое ухо не воспринимает ультразвук, однако, некоторые животные, например, летучие мыши, могут воспринимать и издавать ультразвук. Частично воспринимают ультразвук грызуны, кошки, собаки, киты, дельфины. Ультразвуковые колебания возникают при работе моторов автомобилей, станков и ракетных двигателей. В практике для получения ультразвука обычно применяют электромеханические генераторы ультразвука, действие которых основано на способности некоторых материалов изменять свои размеры под действием магнитного (магнитострикционные генераторы) или электрического поля (пьезоэлектрические генераторы), издавая при этом звуки высокой частоты. Из-за большой частоты (малой длины волны) ультразвук обладает особыми свойствами.

Он сильно поглощается газами и слабо жидкостями. В жидкости под воздействием ультразвука образуются пустоты в виде мельчайших пузырьков с кратковременным возрастанием давления внутри них. Кроме того, ультразвуковые волны ускоряют протекание процессов диффузии (взаимопроникновения двух сред друг в друга),. существенно влияют на растворимость вещества и в целом на ход химических реакций. Эти свойства ультразвука и особенности его взаимодействия со средой обусловливают его широкое техническое и медицинское использование.

Впервые идея практического использования ультразвука возникла, как известно, в первой половине прошедшего века в связи с разработкой методов и приборов для обнаружения в глубине моря различных объектов: подводных лодок, рифов, подводных частей айсбергов и т.д. Это было вызвано прежде всего гибелью в 1912 г. "Титаника" и начавшимся участием подводных лодок в военных операциях во время первой мировой войны.

Низкочастотные ультразвуковые колебания хорошо распространяются в воздухе. Биологический эффект воздействия их на организм зависит от интенсивности, длительности воздействия и размеров поверхности тела, подвергаемой действию ультразвука. Длительное систематическое влияние ультразвука, распространяющегося в воздухе, вызывает функциональные нарушения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. У работающих на ультразвуковых установках отмечают выраженную астению, сосудистую гипотонию, снижение электрической активности сердца и мозга. Изменения ЦНС в начальной фазе проявляются нарушением рефлекторных функций мозга (чувство страха в темноте, в ограниченном пространстве, резкие приступы с учащением пульса, чрезмерной потливостью, спазмы в желудке, кишечнике, желчном пузыре). Наиболее характерны вегетососудистая дистония с жалобами на резкое утомление, головные боли и чувство давления в голове, затруднения при концентрации внимания, торможение мыслительного процесса, на бессонницу.

Контактное воздействие высокочастотного ультразвука на руки приводит к нарушению капиллярного кровообращения в кистях рук, снижению болевой чувствительности, т. е. развиваются периферические неврологические нарушения. Установлено, что ультразвуковые колебания могут вызывать изменения костной структуры с разрежением плотности костной ткани.

Производственная вибрация.

Основные понятия и определения. Действие вибрации на организм человека. Принципы нормирования вибрации на производстве

2.1 Область применения и общие положения вибрация

Измерение и гигиеническая оценка вибрации, а также профилактические мероприятия должны проводиться в соответствии с руководством 2.2.4/2.1.8-96 "Гигиеническая оценка физических факторов производственной и окружающей среды" (в стадии утверждения).

С утверждением настоящих санитарных норм утрачивают силу "Санитарные нормы и правила при работе с машинами и оборудованием, создающими локальную вибрацию, передающуюся на руки работающих" № 3041-84, "Санитарные нормы вибрации рабочих мест" № 3044-84, "Санитарные нормы допустимых вибраций в жилых домах" № 1304-75.

2.2 Термины и определения

Предельно допустимый уровень (ПДУ) вибрации - это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ вибрации не исключает нарушение здоровья у сверхчувствительных лиц.

Допустимый уровень вибрации в жилых и общественных зданиях - это уровень фактора, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к вибрационному воздействию.

Корректированный уровень вибрации - одночисловая характеристика вибрации, определяемая как результат энергетического суммирования уровней вибрации в октавных полосах частот с учетом октавных поправок.

Эквивалентный (по энергии) корректированный уровень изменяющейся во времени вибрации - это корректированный уровень постоянной во времени вибрации, которая имеет такое же среднеквадратичное корректированное значение виброускорения и/или виброскорости, что и данная непостоянная вибрация в течение определенного интервала времени.

2.3 Классификация вибраций, воздействующих на человека

По способу передачи на человека различают:

Общую вибрацию, передающуюся через опорные поверхности на тело сидящего или стоящего человека;

Локальную вибрацию, передающуюся через руки человека.

Примечание. Вибрация, передающаяся на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, относится к локальной вибрации.

По источнику возникновения вибраций различают:

Локальную вибрацию, передающуюся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием;

Локальную вибрацию, передающуюся человеку от ручного немеханизированного инструмента (без двигателей), например, рихтовочных молотков разных моделей и обрабатываемых деталей;

Общую вибрацию 1 категории - транспортную вибрацию, воздействующую на человека на рабочих местах самоходных и прицепных машин, транспортных средств при движении по местности, агрофонам и дорогам (в том числе при их строительстве). К источникам транспортной вибрации относят: тракторы сельскохозяйственные и промышленные, самоходные сельскохозяйственные машины (в том числе комбайны); автомобили грузовые (в том числе тягачи, скреперы, грейдеры, катки и т.д.); снегоочистители, самоходный горно-шахтный рельсовый транспорт;

Общую вибрацию 2 категории - транспортно-технологическую вибрацию, воздействующую на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок. К источникам транспортно-технологической вибрации относят: экскаваторы (в том числе роторные), краны промышленные и строительные, машины для загрузки (завалочные) мартеновских печей в металлургическом производстве; горные комбайны, шахтные погрузочные машины, самоходные бурильные каретки; путевые машины, бетоноукладчики, напольный производственный транспорт;

Общую вибрацию 3 категории - технологическую вибрацию, воздействующую на человека на рабочих местах стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации. К источникам технологической вибрации относят: станки металло- и деревообрабатывающие, кузнечно-прессовое оборудование, литейные машины, электрические машины, стационарные электрические установки, насосные агрегаты и вентиляторы, оборудование для бурения скважин, буровые станки, машины для животноводства, очистки и сортировки зерна (в том числе сушилки), оборудование промышленности стройматериалов (кроме бетоноукладчиков), установки химической и нефтехимической промышленности и др.

а) на постоянных рабочих местах производственных помещений предприятий;

б) на рабочих местах на складах, в столовых, бытовых, дежурных и других производственных помещений, где нет машин, генерирующих вибрацию;

в) на рабочих местах в помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, здравпунктов, конторских помещениях, рабочих комнатах и других помещениях для работников умственного труда;

Общую вибрацию в жилых помещениях и общественных зданиях от внешних источников: городского рельсового транспорта (мелкого залегания и открытые линии метрополитена, трамвай, железнодорожный транспорт) и автотранспорта; промышленных предприятий и передвижных промышленных установок (при эксплуатации гидравлических и механических прессов, строгальных, вырубных и других металлообрабатывающих механизмов, поршневых компрессоров, бетономешалок, дробилок, строительных машин и др.);

Общую вибрацию в жилых помещениях и общественных зданиях от внутренних источников: инженерно-технического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, насосные, пылесосы, холодильники, стиральные машины и т.п.), а также встроенных предприятий торговли (холодильное оборудование), предприятий коммунально-бытового обслуживания, котельных и т.д.

По характеру спектра вибрации выделяют:

Узкополосные вибрации, у которых контролируемые параметры в одной 1/3 октавной полосе частот более чем на 15 дБ превышают значения в соседних 1/3 октавных полосах;

Широкополосные вибрации - с непрерывным спектром шириной более одной октавы.

По частотному составу вибрации выделяют:

Низкочастотные вибрации (с преобладанием максимальных уровней в октавных полосах частот 1-4 Гц для общих вибраций, 8-16 Гц - для локальных вибраций);

Среднечастотные вибрации (8-16 Гц - для общих вибраций, 31,5-63 Гц - для локальных вибраций);

Высокочастотные вибрации (31,5-63 Гц - для общих вибраций, 125-1000 Гц - для локальных вибраций).

По временным характеристикам вибрации выделяют:

Постоянные вибрации, для которых величина нормируемых параметров изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения;

Непостоянные вибрации, для которых величина нормируемых параметров изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 мин при измерении с постоянной времени 1 с, в том числе:

а) колеблющиеся во времени вибрации, для которых величина нормируемых параметров непрерывно изменяется во времени;

б) прерывистые вибрации, когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с;

в) импульсные вибрации, состоящие из одного или нескольких вибрационных воздействий (например, ударов), каждый длительностью менее 1 с.

2.4 Предельно допустимые величины нормируемых параметров

Предельно допустимые величины нормируемых параметров производственной локальной вибрации при длительности вибрационного воздействия 480 мин (8 ч) приведены в табл. 1.

Таблица 1

*Предельно допустимые значения по осям

Среднегеометрические частоты октавных полос, Гц виброускорения виброскорости

м/с дБ м/c 10 дБ

8 1,4 123 2,8 115

16 1,4 123 1,4 109

31,5 2,8 129 1,4 109

63 5,6 135 1,4 109

125 11,0 141 1,4 109

250 22,0 147 1,4 109

500 45,0 153 1,4 109

1000 89,0 159 1,4 109

Корректированные и эквивалентные корректированные значения и их уровни 2,0 126 2,0 112

* Работа в условиях воздействия вибрации с уровнями, превышающими настоящие санитарные нормы более чем на 12 дБ (в 4 раза) по интегральной оценке или в какой-либо октавной полосе, не допускается.

Электробезопасность.

Действие тока на организм человека. Электротравмы и их классификация .

Виды поражения электрическим током.

Проходя через живой организм эл. ток производит действие:

1. Термическое--в ожогах определённых участков, нагреве кровеносных сосудов, крови, нервов.

2. Электролитическое--разложение крови и других органических жидкостей.

3. Биологическое--раздражение и возбуждение живых тканей организма, что сопровождается непроизвольными судорожными сокращением мышц, в том числе мышц сердца и лёгких.

В результате всего этого могут возникнуть различные нарушения в организме плоть до полной остановки работы сердца и лёгких.

Всё это приводит к двум поражениям: электрическим травмам и электрическим ударам.

Электрическая травма--это чётко выраженное местное повреждение тканей организма, вызванное воздействием эл. тока или дуги. Обычно это поражение кожи, связок и костей. В большинстве случаев эл. травмы излечиваются полностью или частично. В отдельных случаях может наступить смерть.

Различают следующие эл. травмы: эл. ожог, эл. знаки, металлизация кожи и механические повреждения.

Эл. ожог--самая распространённая эл. травма.

Ожоги бывают двух видов: токовый и дуговой.

Токовый ожог--возникает при прохождении тока через тело при этом наблюдаются ожоги.

Дуговой ожог--является результатом воздействия на тело эл. дуги, здесь наблюдается высокая температура -- до 3500.

Эл. знаки--метки на теле серого цвета--при прохождении эл. тока.

Металлизация кожи--проникновение в кожу мелких частичек металла, расплавленных эл. дугой.

Эл. удар--это возбуждение живых тканей при прохождении эл. тока. Их бывает четыре по мере тяжести:

Клиническая (мнимая) смерть--переходный период от жизни к смерти, наступающий с момента прекращения работы сердца и лёгких. У человека находящегося в состоянии клинической смерти отсутствуют все признаки жизни. Однако, организм ещё не погиб, продолжаются обменные процессы.

Причина смерти от эл. тока--прекращение работы сердца, лёгких, эл. шок.

Фибриляция--это хаотические быстрые сердечные сокращения.

В зависимости от возникающих последствий электроудары делят на четыре степени:

I - судорожное сокращение мышц без потери сознания;

II - судорожное сокращение мышц с потерей сознания, но с сохранившимися дыханием и работой сердца;

III - потеря сознания и нарушение сердечной деятельности или дыхания (или того и другого);

IV - состояние клинической смерти.

Основные факторы влияющие на исход поражения током.

Величина тока, проходящего через человека является основным фактором, обуславливающим исход поражения. Человек начинает ощущать прохождение переменного тока промышленной частоты (50 гц) величины 0.6-1.5 мА, а пост тока -- 5-7мА это так называемые пороги ощущения токов. Большие токи вызывают у человека судороги.

При 10-15 мА боль становится едва переносимой, а судороги такие что человек не может их преодолеть.

На исход поражения сильно влияет сопротивление тела человека. Наибольшим сопротивлением (3...20 кОм) обладает верхний слой кожи (0,2 мм), состоящий из мертвых ороговевших клеток, тогда как сопротивление спинномозговой жидкости 0,5...0,6 Ом. Общее сопротивление тела за счет сопротивления верхнего слоя кожи достаточно велико, но как только этот слой повреждается - его значение резко снижается.

При расчетах, связанных с электробезопасностью, сопротивление тела человека принимают равным 1 кОм.

Длительность прохождения тока через тело человека оказывает влияние на исход поражения: чем продолжительнее действие тока, тем больше вероятность тяжелого смертельного поражения.

Путь тока в теле пострадавшего играет существенную роль в исходе поражения. Так если на пути тока жизненно важные органы--сердце, лёгкие, головной мозг, то опасность поражения весьма велика.

Род тока и частота постоянный ток менее опасен чем переменный примерно в четыре раза однако это справедливо до 250-300 в. Увеличение частоты ведет к увеличению опасности.

Наиболее опасно прохождение тока через сердце, легкие и головной мозг.

Степень поражения зависит также от рода и частоты тока. Наиболее опасен переменный ток частотой 20... 1000 Гц. Переменный ток опаснее постоянного при напряжениях до 300 В. При больших напряжениях - постоянный ток.

Электробезопасность.

Р е ф е р а т

По дисциплине: физика биологических систем
на тему: Ультразвуки и инфразвуки в природе и технике

Введение

Инфразвук (от латинского infra - ниже, под), упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16--25 Гц. Нижняя граница инфразвукового диапазона неопределенна. Практический интерес могут представлять колебания от десятых и даже сотых долей Гц., т. е. с периодами в десяток секунд. Обычно слух человека воспринимает колебания в пределах 16-20000 Гц (колебаний в секунду). Инфразвук вызывает нервное перенапряжение, недомогание, головокружение, изменение деятельности внутренних органов, особенно нервной и сердечно - сосудистой систем.
Для инфразвука характерно малое поглощение в различных средах вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. Распространение инфразвука на большие расстояния в море даёт возможность предсказания стихийного бедствия -- цунами. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды. "Голос моря" - это инфразвуковые волны, возникающие над поверхностью моря при сильном ветре, в результате вихреобразования за гребнями волн. Вследствие того, что для инфразвука характерно малое поглощение, он может распространяться на большие расстояния, а поскольку скорость его распространения значительно превышает скорость перемещения области шторма, то "голос моря" может служить для заблаговременного предсказания шторма. Своеобразными индикаторами шторма являются медузы. На краю "колокола" у медузы расположены примитивные глаза и органы равновесия - слуховые колбочки величиной с булавочную головку. Это и есть "уши" медузы. Они слышат инфразвуки с частотой 8 - 13 Гц. Шторм разыгрывается еще за сотни километров от берега, он придет в эти места примерно часов через 20, а медузы уже слышат его и уходят на глубину. Длина инфразвуковой волны весьма велика (на частоте 3.5 Гц она равна 100 метрам), проникновение в ткани тела также велико. Можно сказать, что человек слышит инфразвук «всем телом».
Понятие «ультразвук» приобрело в настоящее время более широкий смысл, чем просто обозначение высокочастотной части спектра акустических волн. С ним связаны целые области современной физики, промышленной технологии, информационной и измерительной техники, медицины и биологии. Хотя первые ультразвуковые исследования были выполнены ещё в позапрошлом веке, основы широкого практического применения ультразвука были заложены позже, в 1-й трети 20 в. Как область науки и техники ультразвук получил особенно бурное развитие в последние три-четыре десятилетия. Это связано с общим прогрессом акустики как науки и, в частности, со становлением и развитием таких её разделов, как нелинейная акустика и квантовая акустика, а также с развитием физики твёрдого тела, электроники и в особенности с рождением квантовой электроники.
Широкое распространение ультразвуковых методов обусловлено появлением новых надёжных средств излучения и приёма акустических волн, с одной стороны, обеспечивших возможность существенного повышения излучаемой ультразвуковой мощности и увеличения чувствительности при приёме слабых сигналов, а с другой -- позволивших продвинуть верхнюю границу диапазона излучаемых и принимаемых волн в область гиперзвуковых частот. Характерной особенностью современного состояния физики и техники ультразвука является чрезвычайное многообразие его применений, охватывающих частотный диапазон от слышимого звука до предельно достижимых высоких частот и область мощностей от долей милливатта до десятков киловатт.
Ультразвук применяется в металлургии для воздействия на расплавленный металл и в микроэлектронике и приборостроении для прецизионной обработки тончайших деталей. В качестве средства получения информации он служит как для измерения глубины, локации подводных препятствий в океане, так и для обнаружения микродефектов в ответственных деталях и изделиях. Ультразвуковые методы используются для фиксации малейших изменений химического состава веществ и для определения степени затвердевания бетона в теле плотины. В области контрольно-измерительных применений ультразвука в самостоятельный, установившийся раздел выделилась ультразвуковая дефектоскопия, возможности которой и разнообразие решаемых ею задач существенно возросли. В самое последнее время сформировались как самостоятельные области акустоэлектроника и акустооптика. Первая из них связана с обработкой электрических сигналов, использующей преобразование их в ультразвуковые. Из устройств акустоэлектроники наиболее известными и давно используемыми являются линии задержки и фильтры. Достижения в области изучения поверхностных волн, генерации и приёма гиперзвуковых волн, установление связи упругих волн с элементарными возбуждениями в твёрдом теле привели к существенному расширению возможностей этих устройств и к созданию новых приборов акустоэлектроники, обеспечивающих более сложную обработку сигналов. Акустооптика, связанная с обработкой световых сигналов посредством ультразвука, является одной из самых молодых и быстро развивающихся областей ультразвуковой техники. К новейшим ультразвуковым методам принадлежит акустическая голография, перспективы которой весьма многообещающи, поскольку она создаёт возможность получения изображений предметов в непрозрачных для световых лучей средах. Рассматривая многообразие практических применений ультразвуковых колебаний и волн, нельзя не упомянуть об ультразвуковой медицинской диагностике, которая даёт в ряде случаев более детальную информацию и является более безопасной, чем другие методы диагностики. Об ультразвуковой терапии, занявшей прочное положение среди современных физиотерапевтических методов, и, наконец, о новейшем направлении применения ультразвука в медицине -- ультразвуковой хирургии. Наряду с применениями практического характера, ультразвук играет важную роль в научных исследованиях. Нельзя себе представить современную физику твёрдого тела без применения ультразвуковых и гиперзвуковых методов, без понятия о фотонах, их поведении и взаимодействиях с различными полями и возбуждениями в твёрдом теле. В изучении жидкостей и газов широко используются методы молекулярной акустики; всё большую роль играют ультразвуковые методы в биологии. Интерес к ультразвуку, к ультразвуковой технике всё возрастает, благодаря его проникновению в самые различные области человеческой деятельности. Растёт число публикаций о нём в газетах и журналах, в популярных изданиях. Инженеры и научные работники, занятые в самых различных областях народного хозяйства и науки, оценивают возможности использования ультразвуковых методов для своих конкретных задач и в связи с этим хотят получить представление о различных аспектах физики и техники ультразвука на современном уровне. Однако имеющаяся научно-техническая литература в настоящее время не в состоянии полностью удовлетворить такую потребность. Известные издания общего характера, посвящённые физике и технике ультразвука, зачастую не соответствуют современному состоянию науки. Опубликованные в последние годы специальные монографии научного и прнкладного характера предназначены для подготовленных читателей, обладающих достаточным запасом знаний в области акустики и смежных разделов физики, например, физики твёрдого тела, или в какой-то определенной, связанной с ультразвуком отрасли техники. В этой работе описаны основные темы, касающиеся инфразвука, ультразвука в природе и технике.

    Ультразвук, инфразвук и человек

В последнее время все более широкое распространение в производстве находят технологические процессы, основанные на использовании энергии ультразвука. Ультразвук нашел также применение в медицине. В связи с ростом единичных мощностей и скоростей различных агрегатов и машин растут уровни шума, в том числе и в ультразвуковой области частот.
Ультразвуком называют механические колебания упругой среды с частотой, превышающей верхний предел слышимости -20 кГц. Единицей измерения уровня звукового давления является дБ. Единицей измерения интенсивности ультразвука является ватт на квадратный сантиметр (Вт/см 2).
Ультразвук обладает главным образом локальным действием на организм, поскольку передается при непосредственном контакте с ультразвуковым инструментом, обрабатываемыми деталями или средами, где возбуждаются ультразвуковые колебания. Ультразвуковые колебания, генерируемые ультразвуком низкочастотным промышленным оборудованием, оказывают неблагоприятное влияние на организм человека. Длительное систематическое воздействие ультразвука, распространяющегося воздушным путем, вызывает изменения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. Наиболее характерным является наличие вегетососудистой дистонии и астенического синдрома.
Степень выраженности изменений зависит от интенсивности и длительности воздействия ультразвука и усиливается при наличии в спектре высокочастотного шума, при этом присоединяется выраженное снижение слуха. В случае продолжения контакта с ультразвуком указанные расстройства приобретают более стойкий характер.
При действии локального ультразвука возникают явления вегетативного полиневрита рук (реже ног) разной степени выраженности, вплоть до развития пареза кистей и предплечий, вегетативно-сосудистой дисфункции.
Характер изменений, возникающих в организме под воздействием ультразвука, зависит от дозы воздействия.
Малые дозы - уровень звука 80-90 дБ - дают стимулирующий эффект - микромассаж, ускорение обменных процессов. Большие дозы - уровень звука 120 и более дБ - дают поражающий эффект. Основу профилактики неблагоприятного воздействия ультразвука на лиц, обслуживающих ультразвуковые установки, составляет гигиеническое нормирование.
В соответствии с ГОСТ 12.1.01-89 "Ультразвук. Общие требования безопасности", "Санитарными нормами и правилами при работе на промышленных ультразвуковых установках" (№ 1733-77) ограничиваются уровни звукового давления в высокочастотной области слышимых звуков и ультразвуков на рабочих местах (от 80 до 110 дБ при среднегеометрических частотах третьоктавных полос от 12,5 до 100 кГц).
Меры предупреждения неблагоприятного действия ультразвука на организм операторов технологических установок, персонала лечебно-диагностических кабинетов состоят в первую очередь в проведении мероприятий технического характера. К ним относятся создание автоматизированного ультразвукового оборудования с дистанционным управлением; использование по возможности маломощного оборудования, что способствует снижению интенсивности шума и ультразвука на рабочих местах на 20-40 дБ; размещение оборудования в звуко-изолированных помещениях или кабинетах с дистанционным управлением; оборудование звукоизолирующих устройств, кожухов, экранов из листовой стали или дюралюминия, покрытых резиной, противошумной мастикой и другими материалами.
При проектировании ультразвуковых установок целесообразно использовать рабочие частоты, наиболее удаленные от слышимого диапазона - не ниже 22 кГц.
Чтобы исключить воздействие ультразвука при контакте с жидкими и твердыми средами, необходимо устанавливать систему автоматического отключения ультразвуковых преобразователей при операциях, во время которых возможен контакт (например, загрузка и выгрузка материалов). Для защиты рук от контактного действия ультразвука рекомендуется применение специального рабочего инструмента с виброизолирующей рукояткой.
Если по производственным причинам невозможно снизить уровень интенсивности шума и ультразвука до допустимых значений, необходимо использование средств индивидуальной защиты - противошумов, резиновых перчаток с хлопчатобумажной прокладкой и др.
Развитие техники и транспортны) средств, совершенствование технологических процессов и оборудования сопровождаются увеличением мощности и габаритов машин что обусловливает тенденцию повышения низкочастотных составляющих в спектрах и появление инфразвука, который является сравнительно новым, не полностью изученным фактором производственной среды.
Инфразвуком называют акустические колебания с частого! ниже 20 Гц. Этот частотный диапазон лежит ниже порога слышимости и человеческое ухо не способно воспринимать колебания указанных частот.
Производственный инфразвук возникает за счет тех же процессов что и шум слышимых частот. Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механические колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического или гидродинамического происхождения).
Максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных источников достигают 100-110 дБ.
Исследования биологического действия инфразвука на организм показали, что при уровне от 110 до 150 дБ и более он может вызывать у людей неприятные субъективные ощущения и многочисленные реактивные изменения, к числу которых следует отнести изменения в центральной нервной, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе. Имеются данные о том, что инфразвук вызывает снижение слуха преимущественно на низких и средних частотах. Выраженность этих изменений зависит от уровня интенсивности инфразвука и длительности действия фактора.
В соответствии с Гигиеническими нормами инфразвука на рабочих местах (№ 2274-80) по характеру спектра инфразвук подразделяется на широкополосный и гармонический. Гармонический характер спектра устанавливают в октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.
По временным характеристикам инфразвук подразделяется на постоянный и непостоянный.
Нормируемыми характеристиками инфразвука на рабочих местах являются уровни звукового давления в децибелах в октавных полосах частот со среднегеометрическими частотами 2, 4, 8, 16 Гц. Допустимыми уровнями звукового давления являются 105 дБ в октавных полосах 2, 4, 8, 16 Гц и 102 дБ в октавной полосе 31,5 Гц. При этом общий уровень звукового давления не должен превышать 110 дБ Лин. Для непостоянного инфразвука нормируемой характеристикой является общий уровень звукового давления.
Наиболее эффективным и практически единственным средством борьбы с инфразвуком является снижение его в источнике. При выборе конструкций предпочтение должно отдаваться малогабаритным машинам большой жесткости, так как в конструкциях с плоскими поверхностями большой площади и малой жесткости создаются условия для генерации инфразвука. Борьбу с инфразвуком в источнике возникновения необходимо вести в направлении изменения режима работы технологического оборудования - увеличения его быстроходности (например, увеличение числа рабочих ходов кузнечно-прессовых машин, чтобы основная частота следования силовых импульсов лежала за пределами инфразвукового диапазона).
Должны приниматься меры по снижению интенсивности аэродинамических процессов - ограничение скоростей движения транспорта, снижение скоростей истечения жидкостей (авиационные и ракетные двигатели, двигатели внутреннего сгорания, системы сброса пара тепловых электростанций и т.д.).
В борьбе с инфразвуком на путях распространения определенный эффект оказывают глушители интерференционного типа, обычно при наличии дискретных составляющих в спектре инфразвука.
Выполненное в последнее время теоретическое обоснование течения нелинейных процессов в поглотителях резонансного типа открывает реальные пути конструирования звукопоглощающих панелей, кожухов, эффективных в области низких частот.
В качестве индивидуальных средств защиты рекомендуется применение наушников, вкладышей, защищающих ухо от неблагоприятного действия сопутствующего шума. К мерам профилактики организационного плана следует отнести соблюдение режима труда и отдыха, запрещение сверхурочных работ. При контакте с ультразвуком более 50% рабочего времени рекомендуются перерывы продолжительностью 15 мин через каждые 1,5 часа работы. Значительный эффект дает комплекс физиотерапевтических процедур - массаж, УТ-облучение, водные процедуры, витаминизация и др.

    Ультразвук и инфразвук в приро де

Сонар дельфина.

То, что у дельфина необычайно развитый слух, известно уже десятки лет. Объемы тех отделов мозга, которые заведуют слуховыми функциями, у него в десятки(!) раз больше, чем у человека (при том, что общий объем мозга примерно одинаков). Дельфин способен воспринимать частоты звуковых колебаний, в 10 раз более высокие (до 150 кГц), чем человек (до 15-18 кГц), и слышит звуки, мощность которых в 10-30 раз ниже, чем у звуков, доступных слуху человека, каким бы хорошим ни было зрение дельфина, его возможности ограничены из-за невысокой прозрачности воды. Поэтому основные сведения об окружающей обстановке дельфин получает с помощью слуха. При этом он использует активную локацию: слушает эхо, возникающее при отражении издаваемых им звуков от окружающих предметов. Эхо дает ему точные сведения не только о положении предметов, но и об их величине, форме, материале. Иными словами, слух позволяет дельфину воспринимать окружающий мир не хуже или даже лучше, чем зрение.
Слух человека позволяет различать интервалы времени примерно от одной сотой секунды (10 мс). Дельфины же различают интервалы в десятитысячные доли секунды (0.1-0.3 мс). То же наблюдается и при действии других пробных звуков. Два коротких звуковых импульса отличаются от одного, когда интервал между ними составляет всего 0.2-0.3 мс (у человека - несколько мс). Пульсации громкости звука вызывают ответы, когда их частота приближается к 2 кГц (у человека - 50-70 Гц).

Сонары летучих мышей.

Природа наградила летучих мышей способностью издавать звуки с частотой колебаний выше 20000 герц, то есть ультразвуки, недоступные уху человека. Локатор летучих мышей высокоточен, надежен и ультраминиатюрен. Он всегда находится в рабочем состоянии и во много раз эффективнее всех локационных систем, созданных человеком. С помощью такого ультразвукового "видения" летучие мыши обнаруживают в темноте натянутую проволоку диаметром 0,12-0,05 мм, улавливают эхо, которое в 2000 раз слабее посылаемого сигнала, на фоне множества звуковых помех могут выделять полезный звук, то есть только тот диапазон, который им нужен.
Летучие мыши издают звуки высотой в 50 000-60 000 Гц и воспринимают их. Этим объясняется их способность избегать столкновения с предметами даже при выключенном зрении (принцип радара). В пределах своего диапазона нормальное человеческое ухо воспринимает все тоны беспрерывно, без пропусков.
У летучих мышей ультразвуки обычно возникают в гортани, которая по устройству напоминает обычный свисток. Выдыхаемый из легких воздух вихрем проносится через него и с такой силой вырывается наружу, словно выброшен взрывом. Давление проносящегося через гортань воздуха вдвое больше, чем в паровом котле! Более того, издаваемые звуки очень громкие: если бы мы их улавливали, то воспринимали бы, как рев двигателя реактивного истребителя с близкого расстояния. Не глохнут же летучие мыши потому, что у них есть мышцы, закрывающие уши в момент испускания разведывательных ультразвуков. Безопасность ушей гарантируется совершенством их конструкции: при максимальной частоте следования зондирующих импульсов - 250 в секунду - заслонка в ухе летучей мыши успевает открываться и закрываться 500 раз в секунду.
Поскольку скорость звука значительно превышает скорость движения даже быстрокрылых птиц, эхолокацией можно пользоваться и во время полета. Самым совершенным локатором обладают летучие мыши, развивающие во время охоты большую скорость и постоянно выполняющие в воздухе фигуры высшего пилотажа. О качестве "локаторного" слуха свидетельствуют результаты охоты: самые маленькие хищники уже за 15 минут охоты на комаров, мошек и москитов увеличивают свой вес на 10 процентов. "Навигационный прибор" настолько точен, что в состоянии запеленговать микроскопически малый предмет диаметром всего 0,1 миллиметра. Дональд Гриффин, исследователь эхолокаторов летучих мышей (давший, кстати, им это название), считает, что если бы не эхолот, даже всю ночь, летая с открытым ртом, летучая мышь поймала бы по закону случая одного-единственного комара.

Другие природные сонары.

Сонары имеются также и у ряда других видов животных. Они есть у кашалотов, которые используют их для поиска скоплений глубоководных кальмаров. Сонар кашалота своеобразная дальнобойная пушка", имеющая длину до 5 м и занимающая почти треть тела животного. Эхолокация обнаружена у обитающих в Америке птиц гуахаро. Их сонары менее совершенны, чем у летучих мышей и дельфинов. Они работают на относительно низких частотах, а именно в интервале от 1500 до 2500 Гц. Поэтому гуахаро не замечают в темноте объектов, имеющих небольшие размеры. В пещерах гуахаро очень шумно. Птицы издают зловещие пронзительные крики, напоминающие плач и стоны, трудно переносимые для непривычного уха.
Эхолокацией пользуются и стрижи-саланганы, обитающие в Индонезии и на островах Тихого океана. У разных видов саланганов сонары работают на разных частотах: 2000 до 7000 Гц. Любопытно, что когда птица сидит, её эхолокационный аппарат не работает; локационные импульсы посылаются только в полете (при взмахивании крыльями). Не работает сонар саланганов и на свету.

    Ультразвук и инфразвук в техни ке

Применение инфразвука в медицине

В настоящее время инфразвук начинают медленно использовать в медицине. В основном при лечении рака (удаление опухолей), в микрохирургии глаза (лечение заболеваний роговицы) и в некоторых других областях. В России впервые лечение инфразвуком роговицы глаза применили в Российской детской клинической больнице. Впервые в практике детской офтальмологии при лечении заболеваний роговицы применен инфразвук и инфразвуковой фонофорез. Подведение лекарственных веществ к роговице с помощью инфразвука позволило не только ускорить процесс выздоровления, но и способствовало рассасыванию стойких помутнений роговицы, а также снизить количество рецидивов заболевания. Сейчас существуют немало физиоотерапевтических аппаратов использующих метод лечения инфразвуком. Но они имеют применение лишь в узких специализациях. По применению инфразвука против рака известно очень мало, существуют единичные устройства такого типа. Хотя перспективность их применения не вызывает больших сомнений. Сложность применения обусловлена тем, что инфразвук оказывает губительное воздействие на живой организм, нужно провести сотни испытаний и много лет работы, чтобы найти подходящие параметры воздействия. Будущее этого метода не за горами.

Инфразвуковое (психотронное) оружие и его применение

В XXI веке имеются сведения по разработке и испытаниях инфразвукового оружия некоторыми странами - лидерами на военно-политической мировой арене, в том числе непременно США и Россией. Создатели сверхоружия, основанного на воздействии инфразвука, утверждают, что оно полностью подавляет противника, вызывая у него такие "неотвратимые" последствия, как тошнота и рвота. В основном инфразвуковое оружие применяют против живой силы. По данным исследований, проводившихся в некоторых странах, инфразвуковые колебания могут воздействовать на центральную нервную систему и пищеварительные органы, вызывая паралич, рвоту и спазмы, приводить к общему недомоганию и болевым ощущениям во внутренних органах, а при более высоких уровнях на частотах в единицы Гц - к головокружению, тошноте, потере сознания, а иногда к слепоте и даже смерти.
Инфразвуковое оружие может также вызывать у людей паническое состояние, потерю контроля над собой и непреодолимое желание укрыться от источника поражения(!), что особенно ценно в условиях войны. Определенные частоты могут воздействовать на среднее ухо, вызывая вибрации, которые в свою очередь, становятся причиной ощущений сродни тем, какие бывают при укачивании, морской болезни. Дальность его действия определяется излучаемой мощностью, значением несущей частоты, шириной диаграммы направленности и условиями распространения акустических колебаний в реальной сред Разработчики вооружения такого вида и исследователи его ужасных последствий потратили немало денег из государственной казны.
Инфразвуковое оружие - один из видов ОМП (оружие массового поражения), основанного на использовании направленного излучения мощных инфразвуковых колебаний. Прототипы такого оружия уже существуют и неоднократно рассматривались в качестве возможного объекта для испытаний. Практический интерес представляют колебания с частотой от десятых и даже сотых долей до единиц Гц. Для инфразвука характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, в воде и в земной коре могут распространяться на большие расстояния, проникать сквозь бетонные и металлические преграды. Это оружие оказывает психотронное воздействие на ЦНС (центральная нервная система) человека, впоследствии при высоких частотах выводя из строя весь организм. В США разработками этого секретного оружия занимается Пентагон, в частности Минобороны США. Наряду с разработками инфразвуковой пушки, там особое внимание уделяют исследованиям по воздействию этого оружия на человека, выделяются многомилионные трансферты. Ивестно, что разработками такого вида вооружения занимались в СССР, в конце 80-х годов. Из рассказа доктора технических наук В. Канюка: “Я возглавлял секретный комплекс в Подлипках. Он входил в НПО “Энергия” (руководитель - акодемик В.П. Глушко). Во исполнении закрытого Постановления ЦК КПСС и Совмина СССР от 27 января 1986 года мы создали генератор специальных физических полей. Он был способен корректировать поведения огромных масс населения. Выведенная на космическую орбиту, эта аппаратура охватывала своим “лучем” территорию, равную Краснодарскому краю. Средства, ежегодно выделявшиеся на эту и смежные с ней программы, были эквивалентны пяти миллиардам долларов(!)...” (да, именно тех долларов по курсу около 6 руб. за 1 у.е.) Летом 1991 года комитет Верховного Совета СССР опубликовал жутковатую цифру. КГБ (комитет госбезопасности, аналог нашего ФСБ или американского ФБР), Академия наук, Министерство обороны и другие ведомства израсходовали на разработки психотронного оружия полмиллиарда полновесных дореформенных рублей. Одной из главных задач было “дистанционное медико-биологическое и психофизическое воздействие на войска и население противника”. В России (по неофициальным данным) существуют отечественные разработки психотронного оружия основанного на распространении инфразвуковых волн “Лава - 5” и “Русло - 1”. Указывается, что в классификации средств массового поражения (ею пользуются военно-промышленные комплексы развитых стран) появился пункт: “Это оружие с воздействием на генетический аппарат. В определенных кругах оно называется “экологически чистым” и даже “гуманным”, не разрушающим городов и зачастую не убивающим людей, например, как ядерное оружие. Несмотря на низкую разрушающую способность, оно имеет более высокий КПД против живой силы противника (за исключением ядерного оружия и некоторых др.). Это оружие так же интересно не только военным, но и силам полиции, как эффективная мера воздействия во время разгона демонстраций и массовых беспорядках, оно должно в будущем заменить водомётные пушки, резиновые пули и дубинки, слезоточивый газ и др. устаревшие средства. Его так же называют этническим оружием. Можно с уверенностью сказать, что инфразвуковое оружие - это новая веха в разделе оружий массового поражения.

Применение ультразвука в медицине

Гигиена. То, что ультразвук активно воздействует на биологические объекты (например, убивает бактерии), известно уже более 70 лет, но до сих пор среди медиков нет единого мнения о конкретном механизме его воздействия на больные органы. Одна из гипотез: высокочастотные УЗ-колебания вызывают внутренний разогрев тканей, сопровождаемый микромассажем.
Санитария. Широко применяются в больницах и клиниках УЗ-стерилизаторы хирургических инструментов.
Диагностика. Электронная аппаратура со сканированием УЗ-лучом служит для обнаружения опухолей мозга и постановки диагноза.
Акушерство – область медицины, где эхоимпульсные УЗ-методы наиболее прочно укоренились, как, например, ультразвуковое исследование (УЗИ) движения плода, которое недавно прочно вошло в практику. Сейчас происходит накопление информации по движению конечностей плода, псевдодыханию, по динамике сердца и сосудов. Пока исследуются физиология и развитие плода, а до обнаружения аномалий пока ещё далеко.
Офтальмология. Ультразвук особенно удобен для точного определения размеров глаза, а также для исследования патологий и аномалий его структур в случае непрозрачности и, следовательно, недоступности для обычного оптического исследования. Область позади глаза – орбита – доступна обследованию через глаз, поэтому ультразвук вместе с компьютерной томографией стал одним из основных методов исследования патологий этой области.
Кардиология. Ультразвуковые методы широко применяются при обследовании сердца и прилегающих магистральных сосудов. Это связано с возможностью быстрого получения пространственной информации, а также возможностью её объединения с томографической визуализацией.
Терапия и хирургия. Давно известно, что
УЗ-излучение можно сделать узконаправленным. Французский физик Поль Ланжевен впервые заметил его повреждающее действие на живые организмы. Результаты его наблюдений, а также сведения о том, что УЗ-волны могут проникать сквозь мягкие ткани человеческого организма, привели к тому, что с начала 1930-х гг. возник большой интерес к проблеме применения ультразвука для терапии различных заболеваний. Особенно широко ультразвук стал применяться в физиотерапии. Тем не менее лишь недавно стал намечаться научный подход к анализу явлений, возникающих при взаимодействии УЗ-излучения с биологической средой. Терапевтический ультразвук можно разделить на ультразвук низких и высоких интенсивностей – соответственно неповреждающий нагрев (или какие-либо нетепловые эффекты) и стимуляция и ускорение нормальных физиологических реакций при лечении повреждений (физиотерапия и некоторые виды терапии рака). При более высоких интенсивностях основная цель – вызвать управляемое избирательное разрушение в тканях (хирургия). Электронная аппаратура используется в нейрохирургии для инактивации отдельных участков головного мозга мощным сфокусированным высокочастотным (порядка 1000кГц) пучком.

Другие технологии

Гидролокация. Давление в УЗ-волне превосходит давление в волне обычного звука в тысячи раз и легко обнаруживается с помощью микрофонов в воздухе и гидрофонов в воде. Это даёт возможность применения ультразвука для обнаружения косяков рыбы или других подводных объектов. Одна из первых практических УЗ-систем обнаружения подводных лодок появилась в конце Первой мировой войны.
Ультразвуковой расходомер. Принцип действия такого прибора основан на эффекте Доплера. Импульсы ультразвука направляются попеременно по потоку и против него. При этом скорость прохождения сигнала то складывается со скоростью потока, то вычитается из неё. Возникающая разность фаз импульсов в двух ветвях измерительной схемы регистрируется электронным оборудованием, в итоге вычисляется скорость потока, а по ней – и массовая скорость (расход). Этот измеритель может применяться как в замкнутом контуре (например, для исследований кровотока в аорте или охлаждающей жидкости в атомном реакторе), так и в открытом (например, реки).
Химическая технология. Вышеописанные методы относятся к категории маломощных, в которых физические характеристики среды не изменяются. Но существуют и методы, в которых на среду направляют ультразвук большой интенсивности. При этом в жидкости развивается мощный кавитационный процесс (образование множества пузырьков, или каверн, которые при повышении давления схлопываются), вызывая существенные изменения физических и химических свойств этой среды. Многочисленные методы УЗ-воздействия на химически активные вещества объединяются в научно-техническую отрасль знаний, называемую УЗ-химией. Она исследует и стимулирует такие процессы, как гидролиз, окисление, перестройка молекул, полимеризация, диполимеризация, ускорение реакций.
УЗ-пайка. Кавитация, обусловленная мощными УЗ-волнами в металлических расплавах, и разрушает оксидную плёнку алюминия, и позволяет производить его пайку оловянным припоем без флюса. Изделия из спаянных ультразвуком металлов стали обычными промышленными товарами.
УЗ-механическая обработка. Энергия ультразвука успешно используется при машинной обработке деталей из очень твёрдых и хрупких материалов, как, например, стекло, керамика, карбид вольфрама, закалённая сталь. В промышленности также используется большой ассортимент оборудования для очистки поверхностей кварцевых кристаллов и оптического стекла, малых прецизионных шарикоподшипников, снятия заусенцев с малогабаритных деталей.
Широко применяется ультразвук для приготовления однородных смесей. Ещё в 1927 г. американские учёные Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду)
и т.д.................